Skip directly to content

Defense Industry Daily

Subscribe to Defense Industry Daily feed
Military Purchasing News for Defense Procurement Managers and Contractors
Updated: 1 hour 37 min ago

Who’s Willing to Step Up for Europe’s Defense?

Tue, 10/21/2014 - 16:06

  • Finnish Defence Forces have started researching [Uutiset] how to replace an aging Hornet fighter fleet, for an estimated €6B. Greater air defense cooperation with Sweden could give the JAS-39E/F Gripen a “second time lucky” edge; the original JAS-39A/B Gripen lost to Boeing’s F/A-18C/D Hornet.

  • Sweden has been investigating for several days sightings of “foreign underwater activity” which is a euphemism for “Russian submarine”. The Russians said maybe the Dutch confused Swedish surveillance, which the Dutch of course deny. BBC | FT.

  • This reminder that we’re running our yearly readership survey is not so stealthy, but we’re blaming the Estonians for putting it there anyway. Thanks for your time and input.

  • NATO would like [Navy Times] to see more US ships in the European theater, as Russia becomes more aggressive and active in the region. The USA would like to see Europe spend more and take its own defense seriously, as Russia becomes more aggressive and active in the region. That’s a tall order, when the French government can’t figure out the math [Le Monde, in French] to back up supposed savings necessary to stop its healthcare system from bleeding billions of euros every year.

  • The modern Royal Navy as seen by the Daily Mirror: 22 surface combatants and assault ships, 33 admirals. You can’t fire admirals at the enemy. Well, you can, but the kinetics are really poor.

Littoral Ship Market

  • CMN’s proposed OCEAN EAGLE 43 MH trimaran minehunter [Navy Recognition], displayed at Euronaval 2014, is interesting as a comparative look at other proposed solutions for littoral patrol and mine warfare ships. Like the American LCS it does aim to operate with a small crew while being modular, but on the other hand this design doesn’t try to break speed records.

How to Grow Exports

  • Martin Neill, a former staffer at the British Embassy in Washington and now a consultant in international defense sales, explains [Defense News] some of the challenges facing defense companies trying to develop their sales abroad.

Middle East

  • McClatchy : the deepening U.S. commitment to Kobani ties Obama’s Islamic State effort to Kurds’ fate.

  • After the Shaitat massacre [WaPo], don’t expect a ton of Sunni tribal revolts against ISIS. “We saw what the Americans did to help the Yazidis and the Kurds. But they have done nothing to help the Sunnis against the Islamic State…” Given that the Sunnis are the key element required to defeat ISIS, that’s a problem.

  • Iraq is requesting [DSCA] a $600M tank ammunition Foreign Military Sale from the US.


  • The Stimpson Center think tank hosted a panel on US-Japan-Australia relations, in the video below:

Categories: News

Sons of Sa’ar? Israel’s Next Generation Frigates

Mon, 10/20/2014 - 18:37
Saar 5: INS Hanit
(click to view full)

The 1,227t/ 1,350 ton Sa’ar 5 Eilat Class corvettes were built by Northrop Grumman in the 1990s for about $260 million each. It’s a decent performer in a number of roles, from air defense to anti-submarine work, to coastal patrol and special forces support. In 2006, the Israelis went looking for a next-generation vessel with better high-end capabilities. Six years later, Israel had nothing to show for its search. In the meantime, massive natural gas deposits have been discovered within Israel’s coastal waters, adding considerable urgency to their search.

The USA is Israel’s logical supplier, but given Israel’s size and cost requirements, the only American option was the Littoral Combat Ship. Israel pursued that option for several years, conducting studies and trying to get a better sense of feasibility and costs. Their approach would have been very different from the American Freedom Class LCS, removing the swappable “mission modules” and replacing them with a fixed and fully capable set of air defense, anti-ship, and anti-submarine weapons. In the end, however, the project was deemed to be unaffordable. Instead, Israel began negotiating with Germany, and reports now include discussions involving both South Korea, and a local shipyard.

Ship Systems: What is Israel Looking For? The Strategic Situation Offshore energy
(click to view full)

Israel’s discovery of massive offshore gas reserves in the Tamar and Leviathan fields has the potential to change Israel diplomatic weight, as well as its economy and energy status. Work is already underway in cooperation with Cyprus, and Greece has shifted from hostile to cooperative over the last decade, but Turkey is making hostile noises, and Syrian hostility is assured.

Potential irregular threats to Israeli drilling installations include UAVs, which have already overflown existing rigs on their way into Israeli airspace, or boat operations with divers or depth charges. Rig owners are working with the IDF to counter the irregular threat, via armed teams on each platform and radars networked to Israel’s coastal defenses. They may need to take further steps with RWS emplacements and missiles, given rules that require enemies to close within 1/2 mile before defenders can open fire.

The higher end is more problematic, and isn’t much discussed, but it exists. Hezbollah has already proven its ability to use long-range surface-launched naval missiles, and drilling platforms are ideal targets if they can be reached. Full state-level threats leave Israel open to the threat of supersonic Russian SS-N-26s in Syria’s possession, and add enemy submarines to this picture. Turkey’s purchase of 6 U214s, Iran’s Kilo Class boats, and a possible Egyptian purchase of 2 U209s fitted with modern systems, are changing the local balance. Turkish saber-rattling and Syrian hostility mean that enemy fighters must also be considered, and the rigs will be placed some distance from Israeli quick-reaction fighter launches.

It’s a complex, multi-dimensional problem, and the solution will have to be multi-layered. Defensive systems and sensors on board the rigs themselves, and naval flotillas of smaller ships that offer presence while providing point defense and surface attack punch, are already in place. Heron UAVs are already operating in maritime patrol mode, which offers Israel a persistent aerial surveillance option, but doesn’t help much with response capability at present. Israel could benefit greatly from maritime patrol aircraft with good on-station time, and offensive capabilities that allow them to intervene. Their aged Westwind 1124N Sea Scan business jets don’t fit that bill.

Meanwhile, their naval flotillas need a boost, and acknowledging higher-end threats becomes very consequential if it means that Israel needs high-end wide-area air defense and anti-submarine capabilities on station.

Israel’s Requirements LCS-I components
(click to view full)

Whatever that solution may be, Israel’s experience with the LCS concept shows where their needs are leading them. From Israel’s point of view, the keys to their original interest in an LCS-I design were threefold.

Flexibility. The 1st key is an open architecture combat system. Israel produces a lot of its own electronics, and the ability to easily integrate their own products into current and future configurations was seen as a huge plus. Lockheed Martin’s VP of Israel Operations, Joshua Shani, meant it when he said that that “participation by the Israeli defense industry will be the cornerstone of [LCS-I's] success.” The same will be true of any other ship type that Israel adopts.

Wider View. The 2nd key is better sensors. LCS-I negotiations focused on Lockheed Martin’s SPY-1F S-band radar, which also equips Norway’s Fridjhof Nansen Class AEGIS frigates. Discussions surrounding other ships have focused instead on IAI Elta’s locally-developed EL/M-2248 MF-STAR “Adir” S-band active array radar, which has been exported to India for use on their Kolkata Class destroyers, and is being installed as a Sa’ar 5 upgrade. AESA radars are much easier to resize for smaller ships, and IAI ELta’s designs scale all the way down to the EL/M-2258 ALPHA (Advanced Lightweight Phased Array) radar, which is being installed on Israel’s 500t class Sa’ar 4.5 Fast Attack Craft.

AN LCS-I would also have offered far superior underwater sensors. The ability to embark larger helicopters, including the MH-60 Seahawk family or similar naval helicopters, would dramatically boosting Israel’s anti-submarine capabilities. A modern bow sonar, which is present in other ship designs, would add a lot all by itself, especially if the ship’s combat system could integrate that data with towed and/or variable-depth sonars.

SM-2 (top), SM-3

Weapon Improvements. The 3rd key involves a wider weapon fit, especially when it comes to air defense. Adopting the MK41 Vertical Launch System would give Israel inherent flexibility over time to integrate new missiles of all types, in order to handle Israel’s combat scenarios, and address changes in threats and operational requirements.

LCS-I’s high-end armament would have included torpedo tubes, mounts for Harpoon or Gabriel anti-ship missiles, and the contents of the ship’s 16 strike-length vertical launch cells. Those cells would offer Israel the flexibility to include anti-air missiles like the new Israeli Barak-8, the entire range of Raytheon’s Standard family air and missile defense interceptors, compatible anti-ship and precision strike missiles like Lockheed Martin’s LRASM, or even current anti-submarine missiles like VL-ASROC. Local options like IAI’s ANAM/ Gabriel 5 and IMI’s Delilah-SL will also be of interest to the Israelis.

In Israel’s case, a strike-length MK41 VLS system could take on strategic significance. Raytheon’s SM-3 (area defense), SM-2 Block IV, and SM-6 missiles (point defense) can be used to defend against ballistic missile attacks, if paired with a suitable radar. The AN/SPY-1F has never received the signal processor upgrades given to larger and more powerful SPY-1D radars for ballistic missile defense, nor has it ever been tested in that role. Alternatively, the ship could be networked with long-range ground radars like Israel’s “Green Pine.” In either scenario, the SM-3’s range and Israel’s tiny size would allow just 1 ship on station to cover most of Israel. A situation where 2 ships out of 4 are on station at any given time is very plausible, and could provide overlapping point defense ABM coverage. Either option would supplement Israel’s medium range Arrow and short range Patriot PAC-2 GEM systems on land. At present, this is an option rather than a focus, but even the potential for such a vital national mission is a first for the Israeli Navy.

Onboard vehicles add to an Israeli frigates’ punch in a different way. New ships will be expected to embark a flexible USV/UUV mix, with the ability to store and launch Rigid Hull Inflatable Boats (RHIB), mine or sub-hunting hunting UUVs, or surface USVs. Israel’s leading-edge capabilities in USVs would make that capability an immediate and long-term force multiplier.

Israel’s core problem is that a high-end, full featured frigate is going to cost them $600+ million. They want the capabilities, but don’t have the money to buy 3-4 ships at that price. In response, they can choose to scale back their desires, or they can find some way to make a deal.

What Are You Shipping: Vessels & Systems Current State: Israel’s Sa’ar 5 Corvettes Sa’ar 5 corvettes
click for video

Some have called the 1,227 tonne Eilat Class a better base model for the USA to adopt, as it seeks an affordable Littoral Combat Ship or flotilla asset. The ships were built by Litton-Ingalls Shipbuilding Corporation of Pascagoula, MS (now HII), based on Israeli designs. All 3 ships of class were launched from 1993 – 1994.

Air Defense. Sa’ar 5 corvettes have moderate anti-air capabilities, thanks to IAI Elta ELM-2218S and ELM-2221 GM STGR radars. Twin 32-cell launchers hold short-range Barak-1 surface-air missiles, and the ship has a Mk15 Phalanx 20mm CIWS gun for last-ditch defense. As of 2013, the ships are preparing to swap their Barak-1 systems for the larger Barak-8 missile, whose 70+ km reach will give the Israeli Navy its first area air defense capability.

ASW. Bow-mounted and towed sonars, plus 6x 324mm torpedo tubes for Mark 46 torpedoes, give these corvettes moderate anti-submarine capability. This was quite adequate until the early 2010s. As Turkey has become progressively more hostile, and unstable neighbors like Egypt buy modern submarines, there is some concern that the Eilat Class’ anti-submarine capabilities may not be enough.

Surface Warfare. Surface warfare is addressed well. Harpoon or Gabriel anti-ship missiles can be used against larger ships or land targets, while the Mk15 Phalanx 20mm gun and Typhoon remotely-operated 7.62-30mm gun/missile systems deal with guerrilla craft. The corvette is also capable of launching small special forces boats, or robotic USVs like RAFAEL’s Protector series.

A 76mm Oto Melara naval gun option could be installed in place of the Phalanx. It would offer slightly less air defense capability, in exchange for a longer reach and more punch against fast boats. That upgrade would be compatible with long-range Vulcano ammunition for naval fire support, but Israel has chosen the Phalanx for now.

The Eilat Class’ helicopter hangar can accommodate AS565 Dauphin/Panther, Kaman SH-2F or Sikorsky S-76N helicopters. Israel’s navy flies the AS565, but they haven’t armed them with substantial naval weapons.

Future Option: Lockheed Martin’s LCS-I LCS-I missions
(click to view full)

The Israelis have a long-standing relationship with Lockheed Martin, and a 2,500-3,000t LCS design with the USA’s swappable mission modules could significantly improve Israel’s ability to conduct anti-submarine warfare and mine neutralization missions.

Unfortunately, the pitifully weak armament of the USA’s LCS ships is inadequate for the Israelis, who need their ships to be able to engage other naval vessels, and to provide their own air defense. Worse, the American design lacks the flexibility to add meaningful weapons in future. As a result, the Israelis took a different approach, eliminating the ship’s swappable mission modules in favor of a much more heavily-armed vessel.

Initial studies were conducted in conjunction with Lockheed Martin, leading to an RFP and even an official $1.9 billion DSCA request for Lockheed Martin’s LCS-I design. That would have made Israel the first LCS export customer. Construction of the LCS-I ships would have occurred at Marinette Marine and Bollinger Shipyards in the United States and American construction allows Israel to buy the ships with American military aid dollars, rather than using its hard-currency budget. Gary Feldman, Lockheed’s business development director international LCS sales, said that detail design could have begun in 2009, with construction starting in 2010.

In the end, however, expected per-ship costs of $700 million or so led the Israelis to back away and look for another solution.

Future Option: HII’s Sa’ar 5B

Northrop Grumman has proposed an enlarged “Sa’ar 5B” corvette with more advanced systems, and Israel has made that task easier by developing their own advanced ship radars and improved missiles. Indeed, the Israelis are implementing a de facto Sa’ar 5B by upgrading existing Eilat Class ships with fixed-plate MF-STAR “Adir” AESA radars, new medium range Barak-8 missiles, and better anti-ship/ land strike missiles.

Northrop Grumman (now HII) has hinted that Sa’ar 5B ships could be built for less than $450 million, using American aid dollars, but Israel initially rejected that option as well. Discussions are rumored to have resumed, but nailing down a firm price will require money up front for extensive design studies. That left Israel looking beyond the USA for their base ship, even as the equipment they wanted in those ships remained fairly constant.

Future Option: Germany, Overall? MEKO CSL
(click to view larger)

In February 2009, Israel switched its interest to ThyssenKrupp Marine Systsems’ MEKO family, which comes in sizes ranging from A100 corvettes to full-size A200 frigates. MEKOs are customized to their destination country, so a German K130 Braunschweig Class is very different than Malaysia’s Kedah Class, even though both begin with the A100 base. As part of that customization, the radar would have been IAI’s Elta’s EL/M-2248 MF-STAR, and many of the other technologies requested for the LCS-I would have applied as well.

Reports are split between a buy of 4 A100 base corvettes to put more ships on station, vs. a purchase of 2 high-end frigates that would be able to focus on advanced anti-submarine and wide-area anti-air warfare.

There was even some talk of making Israel the launch customer for the MEKO CSL, which would have given Israel some of the modularity found in the USA’s LCS class. The Meko CSL is only slightly smaller than the American LCS Freedom Class, at 108m/ 354 ft. long, with a beam of 21 meters and full-load displacement of 2,750 tonnes. Propulsion is by a combined diesel-and-gas (CODAG) water-jet system that cruises at 15 knots and reaches 40. Cruising speed range at would be about is 3,500 nautical miles, with 21 days endurance. The MEKO CSL variant adds improved stealth shapes and measures refined on Sweden’s Visby Class corvettes, and has several modular sections for faster swap-outs. An Israeli MEKO CSL would contain a lot of local content, including IAI Elta’s MF-STAR, the new Barak-8 medium range air defense missile, and Israeli electronic countermeasures systems, among others. The CSL also has a rear mission bay, and could serve as a hub for Israel’s advanced UAVs and robotic naval USV/UUVs.

German negotiations stalled after Germany agreed to provide subsidies for more Dolphin Class submarines, but not for frigates. 2013 Reports indicate that negotiations have resumed.

Asian Quality: The South Korean Option FFX launch
(click to view larger)

South Korea (ROK) is a global leader in shipbuilding, and their successful naval shipbuilding programs include cruiser-size KDX-III AEGIS destroyers as well as smaller ships like their FFX and FFX II light frigates. The FFX Block II in particular appears to be an advanced small combatant that meets Israel’s size and capability requirements. The 2,500t+ ships will offer electrical power to spare, high-end long range radar capabilities, a 127mm/ 5″ gun with guided shell options and future long-range fire capabilities, a 16-cell vertical launch system, and the ability to embark full-size anti-submarine helicopters.

The South Koreans might be able to produce new frigates at the price and quality level Israel needs, and they’ve become significant buyers of Israeli defense technologies in recent years. Israel wants to keep that relationship going, but KAI’s recent loss of a $1 billion deal for new IAF jet trainers has put a dent in things. South Korea remains interested in other Israeli technologies, including its Iron Dome rocket defense system.

A deal that offset ROK defense purchases with Israeli buys of South Korean FFX Block II ships might make everyone happy, and get the Israeli political support required to move the project ahead. Negotiations are reportedly underway.

Final Option: Don’t Go Big – Go Home Saar 5 Eilat Class
(click to view larger)

Israel’s final option is less ambitious in terms of performance, but more ambitious industrially. It involves a deal with the privatized Israel Shipyards. In exchange for government investment to modernize and expand the shipyard, they would design and build an larger, improved version of existing corvettes. The Sa’ar 5.5 option would be designed to give Israel a locally-built offering that was both exportable and upgradeable, without requiring outside help or approval.

Recent MF-STAR/ Barak-8 upgrades are laying the groundwork for a tested option. The question is whether all of the money required for shipyard modernization, ship design, fabrication in a shipyard stretching its capabilities, and platform testing would make the final product as expensive as higher-end options, while offering comparatively less capability. That could also make the vessels unexportable on price grounds, creating a lose-lose-lose scenario.

Contracts & Key Events 2014

Israel’s offshore strategic situation; Significant Sa’ar 5 improvements underway; Negotiations with Germany. Barak-8
(click to view full)

Oct 19/14: Germany. Ha’aretz reports that Germany has agreed to a discount, and seems set to secure the Israeli contract for its next-generation ships:

“A crisis between Israel and Germany over missile boats required to protect Israel’s offshore gas fields has ended after Berlin agreed to slash [EUR] 300 million (about $382 million) off the cost, officials on both sides said. They are expected to initial an agreement for the boats within weeks.”

Time will tell which boats Israel orders. If they still want 4 ships, a sum of just over $900 million with subsidies included could get them MEKO derivatives along the lines of Germany’s own 1,840t K130 Braunschweig Class corvettes, but with Israeli technology. If they’re only ordering 2 ships, possibilities expand to include base options like the 2,750t MEKO CSL, or a MEKO A200 derivative that compares to Turkey’s own 3,350t Barbaros Class. Sources: Ha’aretz, “Missile boat crisis ends as Germany gives Israel $382 million discount”.

Sept 28/14: RFP & timelines. State Comptroller Judge (ret.) Joseph Shapira published an audit report in March 2014 that said Israel’s gas facilities in the Mediterranean were only partially protected, but constituted a prime target for attacks by terrorist organizations. That has ratcheted urgency a bit higher, but Israel may have to wait for some time before its ships sail out:

“The Ministry has been preparing for a number of years an international tender for the procurement of ship to operate in Israel’s marine economic area, and has done in-depth staff work in the matter. The government decided to procure the ships only in November 2013, and provided a special budget for them. Procurement was suspended in order to provide enough time for negotiations for a deal with a foreign country. Last July, following the prolonging of these processes, the Defense Ministry decided to issue an international tender for procurement of the ships. The tender is currently taking place; the envelopes will be opened next December, and a preliminary answer will be given. The tender will be completed by the end of 2015.”

Add time for integration of Israeli components, construction, outfitting, testing, and training, and operational acceptance before 2018 would be quite a feat. Globes reports that the contract’s scope involves NIS 2 billion (about $550 million) for 4 ships. That won’t get them very much. Sources: Globes, “Israel Navy to wait years for gas rig defense ships”.

May 15/14: Germany. Ha’aretz reports that the proposed deal discussed in December 2013 (q.v. Dec 8/13) appears to have fallen through for now:

“The German government has decided not to give Israel a massive subsidy for the purchase of German missile boats, due to the breakdown in Israeli-Palestinian peace talks, both Israeli and German officials said on Thursday.”

Sources: Ha’aretz, “Germany nixes gunboat subsidy to Israel, citing breakdown of peace talks”.

May 13/14: Sa’ar 5+. Israeli improvements to their existing ships are underway. This matters, because deploying the systems within the Israeli Navy makes Israel much more likely to demand them as part of any future frigate. Fielding a tested upgrade to the Eilat Class also provides added weight to options like the Sa’ar 5B or Sa’ar 5.5, by creating a proven starting point.

A “senior naval source” tells The Jerusalem Post that Israel is upgrading the anti-ship and strike missiles on board its ships, in order to give their Navy medium-range precision strike capability against land targets. They weren’t specific, but IAI has developed an “Advanced Naval Attack Missile” as a successor to existing naval Gabriel missiles. The other likely option is IMI’s “Delilah-SL”; it’s a ship-launched version of the Air Force’s go-to missile for strikes against targets that are heavily defended, or require a high level of human judgement via its “man in the loop” feature.

The article adds that a Sa’ar 5 Eilat Class corvette has already been outfitted with IAI Elta’s MF-STAR S-Band AESA radar and Barak-8 air defense missiles. Adding better strike weapons to that array changes effectively creates a proven “Sa’ar 5B/ 5.5″ option. Sources: The Jerusalem Post, “The Israel Navy is quietly enhancing its capabilities for precision, long-range missiles”.

Jan 18/14: Israel Defence reports that Israel is scaling down its naval platform ambitions. They’re reportedly back to a platform around 1,300t, which is about the same size as their Sa’ar 5s, rather than a 2,000t+ platform. They’ll still insist on its ability to carry MF-STAR and the Barak-8, but success won’t entirely solve their problems:

“Originally, the IDF Navy should have initiated the procurement of the new missile frigates in the context of the previous multi-year plan, and funds had been allocated for this purpose as part of that plan, but owing to the cancellation of the LCS option, the process never materialized…. intention of the IDF is to finance the procurement of the new vessels by a dedicated budget allocated by the government outside the framework of the normal defense budget, in order to secure the offshore gas drilling rigs. The procurement plan notwithstanding, the total number of missile frigates in the IDF Navy is expected to decrease during the next five-year period, owing to the obsolescence of the present vessels, some of which are to be decommissioned.”

Sources: Israel Defence, “The Next Missile Frigate of the IDF Navy”.

Jan 8/14: Strategic. Paul Alster & David Andrew Weinberg discuss the difficulties Israel faces in defending its offshore gas resources, and take a critical look at the exploitable reserves and revenue projections. They say flatly that:

“IDF officials concede that they do not have the resources as of now to properly secure the infrastructure at sea.”

They list threats that include UAVs, which have already overflown existing rigs on their way into Israeli airspace; suicide operations with divers, boats or depth charges; and surface-to-surface missiles like the C-802s that have already been used by Hezbollah. Rig owners are working with the IDF to counter the irregular threat, via armed teams on each platform and radars networked to Israel’s coastal defenses. They may need to take further steps with RWS emplacements and missiles, given rules that require enemies to close within 1/2 mile before defenders can open fire. Higher end threats are even more problematic, and aren’t much discussed here, but they exist. It’s a complex, multi-dimensional problem, and the solution will have to be multi-layered.

One apparent error: the authors refer to “two state-of-the-art German-built MEKO class F221 frigates” as Israel’s choice. The F221 is FGS Hessen, a Sachsen Class advanced air warfare destroyer. First off, it isn’t part of the MEKO family, but a separate and more advanced class built in the context of trilateral cooperation between the Netherlands, Germany and Spain. They are top-end multi-role “frigates,” whose size and growth capacity for ballistic missile defense would make them destroyers if Europeans weren’t so averse to the term. It’s a very capable ship, but an unlikely choice. One ship of that class, with modifications, would eat most of Israel’s reported EUR 1 billion budget for 2. Sources: Forbes, “The Daunting Challenge Of Defending Israel’s Multi-Billion Dollar Gas Fields”.

2012 – 2013

Sa’ar 5 & Panther
(click to view full)

Dec 16/13: Strategic. Information Dissemination runs an analysis of Israel’s apparent interest in 2 high-end ships, which is a departure from their traditional focus on larger numbers of smaller vessels. The best that can be said for Jacob Stoil’s analysis is that it’s incomplete. He’s correct to say that this is a departure, and that presence matters, but he never looks at the regional changes underway, and the strategic imperatives created by new enemy capabilities and new Israeli needs. Then there are quotes like this one, which assume premises that turn out not to be true:

“Israel clearly does not intend to use naval power to support land operations or develop independent strategic operations from the sea in a serious way. All of their naval procurement and training decisions over the last more than twenty years have made that impossible.”

Sources: Information Dissemination, “Of Destroyers and Doctrine: An Evaluation of Israel’s Decision to Invest in Larger Hulls”.

Dec 8/13: Germany. The newspaper Ha’aretz reports that Israel’s Defense Ministry is expected to ask the Finance Ministry for a ILS 3 billion budget increase (about $855 million/ EUR 624 million) to purchase 4 “missile boats” as a special buy outside the defense budget, for protection of Israel’s huge offshore natural gas fields. At the same time, the German Bild newspaper is reporting a different deal: 2 ships for EUR 1 billion. The Ha’aretz report does add that Israel continues to negotiate with American and South Korean suppliers, leaving the Navy’s plans characteristically unclear.

What is clear is that there’s a big difference between the implications in the Israeli and German reports. EUR 156 million per ship will struggle to buy a ship like the K130 corvette, a surface warfare patrol ship with limited anti-aircraft capabilities, and no anti-submarine capabilities. They could form interesting flotilla dyads with the proposed Multi-role Super-Dvora, but submarine threats are rising in the Mediterranean. At EUR 500 million per ship, on the other hand, Israel would be looking at high-end MEKO Class frigates will a full range of capabilities, which would become the most advanced ships in their navy. The price would be more limited coverage, with just half the number of ships bought for slightly more money. Sources: Die Presse, “Israel konnte deutsche Kriegsschiffe kaufen” | Ha’aretz, “Defense Ministry seeking $853m to buy German missile boats” | AFP, “”Bild”: Deutschland verkauft Israel zwei raketenbestuckte Zerstorer” | N24, “Israel will Raketenschiffe aus Deutschland” (repeats Ha’aretz figures).

Aug 10/12: South Korea. Israel Defense reports that South Korea is interested in Israel’s Iron Dome rocket defense system, and is negotiating for possible offsetting deals involving frigates for Israel.

April 1/12: South Korea? Israel Defense reports that South Korea is offering to build new surface vessels for the Israeli Navy via Hyundai shipyards. South Korean representatives have reportedly visited Israel and met with the Ministry of Defense, and are said to be continuing discussions. The magazine reports that the offered ships had a displacement of just 1,300 tons, the same size as current Sa’ar 5 Eilat Class corvettes, and significantly smaller than South Korea’s new 2,300t FFX Incheon Class frigates. It didn’t say whether that displacement was measured at full load, after Israel radars, weapons, etc. had all been installed.

Israel hasn’t set aside a budget for such vessels in its current plans, but ongoing discoveries of huge offshore oil and gas are changing its assessment of its security needs.

Meanwhile, Israel Shipyards has reportedly proposed an alternative in which government re-investment would help them add hundreds of employees, invest in a new manufacturing layout, and build 2,100 ton “Saar 5.5″ light frigates. They would then become an exporter, with the ability to field upgraded versions for Israel later on. The MoD has approached the Treasury about this plan, but it’s reportedly stuck, even as negotiations have stalled with the USA for a Freedom Class LCS derivative, and with Germany for a MEKO frigate derivative.

2009 – 2011

LCS too expensive; Talks center around German MEKO designs, incl. MEKO CSL; Israel may not have the budget to buy the ships it wants – but huge resource finds mean they may have to. MEKO 200TN
(click to view full)

November 2010: Leviathan. Israel’s giant “Leviathan” offshore natural gas field is discovered. The gas field is located roughly 130 km/ 81 miles west of Haifa, in 1,500 m/ 4,900 ft. of water. Estimated reserves are a stunning 500+ billion cubic meters, or more than 18 trillion cubic feet.

Israel’s navy just became much more important.

Giant offshore gas find

July 25/10: MEKO. Hopes of German government subsidies to finance Israel’s MEKO buy appear to be fading, amidst the country’s tightening climate of austerity. From The Jerusalem Post:

“The [Israeli] Defense Ministry statement came amid reports that Chancellor Angela Merkel’s government had decided to turn down an Israeli request for financial assistance in purchasing the Dolphin-class submarine and new [MEKO frigates]. In another rare statement, the German government, which rarely talks about defense sales, also denied it was holding talks with Israel on subsidizing new naval vessels… Israel had hoped to receive additional subsidies for two Meko-class ships it was interested in purchasing.”

May 18/10: MEKO CSL? Aviation Week reports that Israel may become the launch customer for ThyssenKrupp’s new MEKO CSL. If true, the American Littoral Combat Ship’s price may end up spawning an international export competitor.

The Meko CSL is only slightly smaller than the American LCS Freedom Class, at 108m/ 354 ft. long, with a beam of 21 meters and full-load displacement of 2,750 tonnes. Propulsion is by a combined diesel-and-gas (CODAG) water-jet system that cruises at 15 knots and reaches 40. Cruising speed range at would be about is 3,500 nautical miles, with 21 days endurance. The MEKO CSL variant adds improved stealth shapes and measures refined on Sweden’s Visby Class corvettes, and has several modular sections for faster swap-outs. An Israeli MEKO CSL would also contain a lot of local content, including IAI Elta’s MF-STAR active-array radar, the new Barak-8 medium range air defense missile, and Israeli electronic countermeasures systems, among others. The CSL does have a rear mission bay, and one of its roles would likely be as a hub for Israel’s advanced set of robotic UAVs and naval USV/UUVs.

Jan 18/10: MEKO. Defense News reports that Germany and Israel are in talks concerning a $1.45 billion naval deal that would add 1 Dolphin Class submarine, and 2 MEKO-derived frigates as the beginning of Israel’s next-generation frigate program. Current reports do not see a January 2010 agreement as likely, and Defense News claims that Israel is asking Germany to pay for 33% of the cost as a German industrial stimulus program, just as it did with Israel’s previous 2-sub order.

The MEKO ships would be Israel’s alternative to a very modified version of Lockheed Martin’s Littoral Combat Ship design, which Israel rejected due to its expected $700+ million cost. Even so, American components in the total naval package could reach up to $200 million. This is important because Israel can use US military aid dollars to buy them, instead of hard currency.

Nov 25/09: German MEKOs? Reuters reports on negotiations between TKMS and Israel to buy up to 8 next-generation MEKO ships.

“Built at ThyssenKrupp’s (TKAG.DE) Blohm+Voss shipyards in Hamburg, the Meko costs around $300 million but Israel wants the German government to underwrite the sale. An official involved in the talks said Israel sought a discount of 20 to 30 percent. That would help the Meko outprice the Littoral Combat Ship (LCS)… An Israeli official said despite the fact that U.S. defence grants would significantly defray the estimated $460 to $600 million cost of the LCS, the Meko topped the wish list. “We want to close a deal by the end of the year. Now it comes down to financing issues with the Germans,” he said.”

Previous reports placed the LCS-I cost closer to $650-700 million. As was the case with the LCS-I, Israel is looking to incorporate a range of Israeli technologies and weapons into the frigates.

Oct 15/09: TKMS + UAE. Blohm + Voss parent firm, ThyssenKrupp Marine Systems, sells an 80% share of all Blohm + Voss groups to the United Arab Emirates’ firm Abu Dhabi MAR, and makes future naval construction a 50/50 joint venture. It remains to be seen whether this will affect Israeli negotiations to use Blohm + Voss’ MEKO designs as the base for its future frigate.

June 29-July 6/09: USA Out. Multiple sources report that Israel is abandoning the LCS-I design, owing to its high costs. Israeli estimates reportedly put the price of an LCS-I at over $600 million, a reasonable figure given the $650-700 million cost of the first 2 American ships, and LCS-I’s extensive Israeli equipment upgrades. Arutz Sheva:

“As much as we sought commonality with the U.S. Navy, it became much, much more expensive than planned,” a naval source said. “At the end of the day, we had no choice but to face that fact that, for us, it was unaffordable.”

Surprisingly, Israel also turned down a 2,300 ton Sa’ar 5.5/5B option from original Eilat class builder Northrop Grumman, owing to expected costs of about $450 million. Instead, Israel is reportedly looking at expanding cooperation with ThyssenKrupp Marine Systems (TKMS), whose HDW subsidiary builds Israel’s Dolphin subs. The idea is to build an advanced, stretched version of Blohm + Voss’ 2,200 ton MEKO A-100 corvette. The ship would add Mk 41 VLS cells, IAI’s Elta’s EL/M-2248 MF-STAR “Adir” active array radar, and other Israeli equipment. The Israelis reportedly believe they would be able to field such a capable ship for around $300 million, and that they can build it locally as a joint military/economic stimulus project. One source told Arutz Sheva (INN) that “We believe a strong case can be made for making this into a national project that fosters self sufficiency and provides all the economic benefits that come with creating a military shipbuilding industry.”

TKMS would be the main design partner, IAI looks set to step into the role of overall systems integrator, and the likely shipbuilder would be Israel Shipyards in Haifa. Israel Shipyards have mostly focused on much smaller fast attack boats, but were also responsible for local integration of the Sa’ar 5 corvettes.

This version of Israel’s next-generation ship project will face 2 main challenges. One is a technical/ engineering challenge. The other is financial.

As one source told the Jerusalem Post: “The challenge will be to make a relatively small ship large enough to carry everything we need, including the radar system.” Given that the systems Israel wants usually equip 4,000+ ton ships, that challenge should not be minimized. TKMS’ Meko 200, in service with the Turkish and South African navies, does offer a 3,850 ton option, and the Israeli Navy is reportedly preparing to issue a design contract to IAI and TKMS subsidiary Blohm+Voss, in order to sort out their technical options.

The financial challenge will be equally formidable. Both LCS-I and a Sa’ar 5.5 design could be purchased with American military aid dollars, which must be spent in America. Those agreements have provisions that allow up to 26% of that aid to be spent in Israel, but those funds are already committed to projects like an extended-range Barak anti-aircraft missile, IAI Elta’s MF-STAR active array radar, and other priority projects. There are 2 possible workarounds for this, and they are not mutually exclusive. One involves financing from other ministries beyond defense, as an industrial project that would provide employment, expand Israeli shipbuilding capabilities, and might even create an exportable platform if the right agreement is struck with TKMS. The second workaround involves using American aid dollars to cover some elements, like steel, American production of the Meko’s MTU1168 diesel engine by General Dynamics, etc., in order to reduce the hard currency price. That would help the project get approved, but it comes with a cost of its own – it would force the Israelis to labor under America’s cumbersome ITAR export approval laws whenever they or TKMS wished to sell the design abroad.

If those conundrums cannot be resolved at an acceptable cost, a 3rd option may exist. Defense News adds that Israel might have driven down the Sa’ar 5.5’s price by $100 million if it had paid for a contract design/detail design process, and that option may return depending on how efforts with ThyssenKrupp Marine Systems progress:

“When Northrop Grumman makes a fixed-price offer, it’s the result of an organized and serious process that allows the company to honor all of its commitments,” a company representative said. “Without conducting a contract design – which eliminates most of the uncertainties that drive up price – NG couldn’t offer the unit costs we all believed we could have delivered to the Israel Navy.”

Sources: Arutz Sheva | Jerusalem Post | Defense News | Jane’s.

LCS-I out; No NGC Sa’ar 5B either

Feb 12/09: Industrial. The director of naval procurement at the Israeli Ministry of Defence’s purchasing mission in New York informs U.S. parties that a change in plans toward a different class of locally-built ships may be in the cards:

“In the event this option turns out to be more suitable both in terms of our operational and budgetary requirements, the [multimission ships] will be built in Israel.”

Source: Defense News June 2009 report.

Feb 1/09: LCS-I. The Jerusalem Post reports that OC Navy Adm. Elazar Marom has dispatched a number of officers to the United States to sail on Lockheed Martin’s Freedom [LCS 1] and test its capabilities. The report adds:

“In addition to reviewing the LCS – whose price has soared over the past year and now reportedly reaches $500 million – the navy is also considering downgrading its procurement plans and purchasing more Sa’ar 5-class missile ships… “There are a number of possibilities and they are under review,” one source said. “There are other possibilities such as more Sa’ar 5s, an upgraded Sa’ar 5 that would be called Sa’ar 5.5, or to wait for the LCS’s price to go down.”

January 2009: Tamar. Noble Energy announces that exploratory drilling has found an offshore gas field about 80 km west of Haifa, in 1,700m / 5,600 ft. of water. The field is called Tamar.

Eventual estimates for the area are a bit of a shock to the traditionally resource-poor Israelis: 200 billion cubic meters / 7.1 trillion cubic feet of natural gas.

Giant offshore gas find

2006 – 2008

From studies to a formal LCS-I request. (click to view full)

July 15/08: LCS-I. The US Defense Security Cooperation Agency announced [PDF] Israel’s official request for up to 4 Littoral Combat Ships (LCS-I variant), including the hull, and all mechanical and electrical functions. The ships will also include design and integration services, hardware and software, spare and repair parts, test and tool sets, personnel training and equipment, publications, U.S. Government and contractor engineering and logistics personnel services, and other related elements of logistics support. The estimated cost is $1.9 billion.

Each ship will be equipped with:

  • 2 MK-41 Vertical Launch Systems, with 8 launch cells for each system. This would allow the ship to hold and fire up to 16 SM-2/3 air defense missiles, or up to 64 RIM-162 Evolved Sea Sparrow Missiles.
  • 1 Enhanced Harpoon Launching System with missile launchers. Harpoon is an anti-ship missile, but the latest versions can also be used to hit land targets.
  • 1 Phalanx Close-In-Weapon System, Block 1A. This is surprising, as Block 1B adds important capabilities against the small boats that remain a concern for Israel. Israel is likely to bolt on other gun systems like RAFAEL’s Typhoon in order to cover that threat, but Israeli systems do not need to be specified in the DSCA announcement.
  • 2 MK-32 triple-launcher Surface Vessel Torpedo Tubes, which handle lightweight torpedoes and launch them from on deck using pressurized air.
  • Communications and Sensors, including Link 16.
  • The same COMBATSS-21 Combat system used in American LCS designs.
  • The smaller AN/SPY-1F (V) AEGIS radar, which is also used on Norway’s Nansen Class frigates. SPY-1F radars lack ballistic missile defense capabilities, but could be networked with other radars like Israel’s “Green Pine.”
  • A MK-99 Fire Control System; or the Ship Self-Defense System (SSDS) now being installed on American Carriers, LHA/LHD ships, San Antonio Class LPDs, etc.

The principal contractors will be:

  • Lockheed Martin Maritime Systems and Sensors in Moorestown, NJ and Eagan, MN (LCS-I, SPY-1F radar, COMBATSS-21, Mk-41)
  • General Dynamics Armament Systems in Burlington, VT (AEGIS illuminator, 20mm gun for Phalanx)
  • Raytheon Company, Equipment Division in Andover, MA and Integrated Defense Systems in Waltham, MA (Phalanx, SSDS)

The DSCA announcement says that the Israeli Navy will have no difficulty integrating these ships into its Naval forces, adding that this proposed sale will not require the assignment of any U.S. Government or contractor representatives to the Israel.

LCS-I DSCA request

Feb 6/08: LCS-I. The Jerusalem Post:

“Looking to upgrade its sea-based capabilities, the Israel Navy has submitted a Request for Proposal (RFP) to the United States Navy for a new missile ship currently under development by Lockheed Martin Corp. The Defense Ministry said that the navy expects to receive a reply by April.”

The report added a final caveat, but it doesn’t mean as much as it seems when set against a detailed ship design study, and accompanying industrial arrangements for an extensive array of Israeli equipment on board. That prior work and set of partnerships creates a strong pull toward the Team Lockheed design – one that will not be lightly broken:

“While the navy has filed the RFP, defense officials said it was still not certain whether Israel would purchase the LCS from Lockheed Martin. As part of its multi-year plan finalized in September, the IDF decided to purchase two new ships, but did not state from which company.”

September 2007: LCS-I. NAVSEA asks Lockheed Martin to conduct a 9-month, $2.5 million study of combat system integration for an Israeli LCS-I configuration.

Systems that must be compatible with the combat system reportedly include Lockheed’s AEGIS SPY-1F radar and the Israeli Elta EL/M-2248 Adir radar, RAFAEL’s Typhoon remotely-operated gun/missile systems, Raytheon’s Standard SM-2 surface-to-air missile, and Israel Aerospace Industries’ Barak 1 and 8 anti-air missile systems. A Nov 12/07 Lockheed Martin release adds that:

“During the nine-month combat system configuration phase, Lockheed Martin will examine the combat system performance of LCS-I using two different radar options: the advanced radar under development by Israeli Aircraft Industries (IAI) and Lockheed Martin’s SPY-1F radar. The team will examine the performance of these two radar options using the COMBATSS-21 combat management system integrated with the Israeli Navy Command and Control (IC2) system and develop the technical architecture, high level specifications and estimated costs to integrate COMBATSS-21 with IC2 and multiple Israeli and U.S. sensor and weapon systems including the MK 41 Vertical Launch System (VLS)… Lockheed Martin is currently partnered with Rafael Armament Systems, Elbit Systems and Ness on LCS-I.”

Combat system study

April 10/06: LCS-I. Lockheed Martin announces a $5.2 million NAVSEA study studied Team Lockheed’s LCS hull, mechanical, and engineering systems’ ability to accommodate the systems and weapons the Israelis want, while avoiding the need for major redesign of the USA’s basic configuration.

The final answer was that it could, with some obvious modifications to accommodate better radars and vertical launch systems for missiles.

Freedom Class LCS study

Additional Readings & Sources Background: Israeli Sa’ar Vessels

Background: Other Ships

Background: Ship Systems

News and Views

Categories: News

South Korea Launches KF-16 Fighter Fleet Upgrades

Mon, 10/20/2014 - 18:16
(click to view full)

In July 2009, The Korea Times reported that ROKAF was looking to upgrade its F-16C/D fleet’s radar and armament, as part of the 2010-2014 arms acquisition and management package submitted to President Lee Myung-bak for approval.

Under the Peace Bridge II and II deals, The ROKAF bought 140 “KF-16″ Block 52 fighters, which were assembled in Korea between 1994-2004 under a $5.5 billion licensing agreement. Key upgrades to this fleet will include new radars to replace the existing APG-68v5/v7 systems, modern avionics and computers, and upgrades of the planes’ cabling and databuses to MIL-STD-1760. The centerpiece AESA radar competition has a winner now, and South Korea has picked its contractor for the overall upgrade program. Now the effort is turning that into binding contracts, and beginning the upgrade process. Other countries within the region and beyond are interested in similar high-value F-16 upgrade programs, so the ROk’s experiences will be watched carefully.

Korea’s KF-16 Radar The Benefits of AESA Technology NGC’s SABR
click for video

Active Electronically Scanned Array radars offer dramatic increases in fighter performance, and an equally dramatic drop in maintenance costs, thanks to their large array of independently excitable and steerable transmit/receive modules. Advantages over mechanical phased array radars like the KF-16s’ APG-68 include 2x-3x range or performance, simultaneous ground and air scans, and near-zero maintenance over the fighter’s lifetime. The fixed AESA antenna in American designs cuts out high-maintenance motors and hydraulics, and if one T/R module out of thousands burns out or breaks, it matters so little that it’s just left on. More advanced functions like high speed communications, and even focused electronic disruption of enemy radars, also become possible.

South Korea was very interested in AESA performance, but we were told by contractor sources that their calculations of the long-term maintenance savings over existing mechanically-scanned APG-68 radars helped them decide to make the investment in AESA.

F-16s have several AESA radar versions to choose from.

Northrop Grumman supplies the AN/APG-68 radars that equip most current F-16s, as well as the AN/APG-80 radar that equips the United Arab Emirates’ F-16E/F Desert Falcons. The firm has gone on to develop a more generic AESA system called SABR (Scalable Agile Beam Radar) as a drop-in AESA replacement for existing F-16 radars like the APG-68.

Raytheon has taken similar steps, developing an AESA radar called RACR (Raytheon Advanced Combat Radar) for the same purpose. Their radar won, and will equip up to 134 KF-16s.

A 3rd possible choice is IAI ELta’s EL/M-2052. It was originally developed for Israeli F-16s, and would probably have been fitted to the F-16I if the USA hadn’t threatened to cut of all manufacturer support for the fighters. This raises the specter that the US government would use the same tactics in export competitions, so perhaps it’s not surprising that the M-2052’s most promising sales prospects currently involve non-American fighters in India.

Raytheon’s Speed RACR RACR
click for video

Raytheon’s resizable RACR AESA radar is aimed at a very large potential market, as a retrofit for F-16s and F/A-18 Hornets around the world, and as an option for new planes. Raytheon’s goal was to keep the existing aperture and form of existing F-16 and F/A-18 Hornet radars, and keep the same power requirement. That allows customers to just drop it into the smaller fighters without structural or power changes.

The translation of received data is mostly handled within the RACR modules already, minimizing other changes to the receiving fighter, and this same flexibility is possible for other platforms with previous-generation radars. Aperture sizes can be varied for different platforms by changing the number and arrangement of T/R modules, and power back-ends can be varied as well.

APG-79 LRM removal
(click to view full)

The RACR radar’s core design and architecture owes a large debt to the AN/APG-79 AESA radar that equips F/A-18 family Super Hornets. The APG-79’s in-service reliability record became an important selling point for Raytheon in South Korea, and in discussions, Raytheon representatives referred to their technology maturity as an important edge.

Part of that edge involves the hardware, which has served on American & Australian Super Hornets. RACR uses the same “LRM slice” approach as the Super Hornet’s APG-79, and the modernized F-15E Strike Eagle’s APG-82. This maximizes front line maintenance by using internal diagnostics plus swap out sub-modules, instead of using larger “black box” LRUs that require more Tier 2+ depot maintenance. Many aspects of the architecture and active technologies are also similar between APG-79, APG-82, and RACR.

The other facet of RACR’s value proposition involves software. Raytheon has designed their radar families to maximize the role of software in giving them new “modes” and capabilities, even as they work to ensure a common architecture and set of technologies. Raytheon employees have told DID that it’s possible to develop a radar mode like RCDL high-bandwidth communications for a platform like the F/A-18E/F, and have it made available to RACR or APG-82 customers. For a customer like South Korea, the process would have to go through the usual export control channels as a modification to the original FMS case, but development is no longer an expense, and installation involves minimal engineering work, followed by software reprogramming and relatively quick check-out testing. The reverse would also be true, allowing innovations requested by RACR customers to find their way back to other radar fleets.

The bad news is that the APG-79’s software is known to be buggy, and is the subject of repeated and continuing reports from the Pentagon’s Department of Testing & Evaluation.

AESA After-Effects T-50, 3-view
(click to view full)

Korea Aerospace Industries has a very broad set of cooperation agreements with Lockheed Martin, from licenses to build and maintain the ROKAF’s F-16s, to the T-50 family’s development and international marketing agreements. One of those agreements states that the T-50 family of trainers and lightweight fighters may not be equipped with radars more sophisticated than the ones carried in the ROKAF’s KF-16s.

That clause is what forced KAI to abandon SELEX’s Vixen 500E AESA radar for the FA-50, and select IAI Elta’s EL/M-2032 mechanically-scanned radar instead. Adding AESA radars to the KF-16s would remove those strictures, opening the door for similar additions. The result would be a $30-35 million AESA-equipped FA-50+ lightweight fighter for the global export market, which could be a strong competitor for existing F-16s at $40-55 million each. It could even affect broader F-35 exports (currently $120 million per), thanks to its combination of advanced capabilities and traditional lightweight fighter price.

Contracts and Key Events 2013 – 2014

Korea picks Raytheon’s RACR as their KF-16 AESA radar, Taurus’ KEPD 350 as their long-range cruise missile; Is the BAE deal in trouble? RACR retrofit
(click to view full)

Oct 15/14: Deal dying? Korean media report that a proposed $753 million price hike for the KF-16 upgrade deal could result in cancellation. Lockheed Martin waits in the wings, and is reportedly extending an offer that would include more technical help with the multinational KF-X fighter program if the ROKAF switches.

The US government is reportedly demanding another WON 500 billion (about $471 million) for unspecified added “risk management,” while BAE is reportedly requesting another WON 300 million ($282 million) to cover a 1-year program delay. DAPA has been talking to the US government about these issues since August 2014, but their public statements are becoming visibly frustrated and distrustful, especially with respect to the risk fee. Words like “ludicrous” are not what you want to hear from an official negotiating partner in an Asian country. The risk for BAE is that cancellation would really hurt its push to export F-16 upgrades as a growth line of business, and Raytheon also stands to lose big by losing its cornerstone customer for the RACR AESA radar. Unfortunately, since it’s a Foreign Military Sale managed by the US military rather than a Direct Commercial Sale process managed by the purchasing government, the US government is inextricably involved in program management and in financial negotiations. That sharply limits maneuvering room for BAE, Raytheon, and South Korea’s DAPA.

Lockheed Martin’s angle is a spinoff from their recent F-35A deal, which will supply 42 aircraft to the ROKAF. Part of their industrial offsets involved help designing the proposed KF-X fighter, which is currently a collaboration between South Korea and Indonesia. They were cautious about providing too much help, but they reportedly see enough benefit in badly wounding an F-16 upgrade competitor to offer another 400 man-years of support for KF-X (total: 700) if the ROKAF switches. Sources: Chosun Ilbo, “U.S. in Massive Price Hike for Fighter Jet Upgrade” | Defense News, “F-16 Upgrade: Problems With S. Korea-BAE Deal Could Open Door to Lockheed” | Korea Times, “Korea may nix BAE’s KF-16 upgrade deal”.

June 25/14: Phase 1. BAE has received a pair of ROKAF F-16s at the company’s Alliance Airport facility in Fort Worth, TX. Phase 1 will see them used as testbeds and prototypes. They’ll be equipped with advanced mission computers, new cockpit displays, advanced radars and targeting sensors, and integrated with advanced weapons. Once the changes are proven out and accepted, Phase 2 will be ready to begin, and BAE believes that will happen before the end of 2014.

BAE says that this will be the first time that any of America’s “teen series” fighters has received a major upgrade that isn’t coming from the original manufacturer. That’s actually a debatable point. The Israelis have made wide-ranging modifications to F-16s, and the cumulative effect of the Falcon-UP and subsequent programs is arguably as extensive as BAE’s work for Korea. Unlike Israel Aerospace’s work creating the clearly superior “F-4 [Phantom II] 2000/2020,” however, it’s possible to argue that Israeli F-16 upgrades were more of an alternative configuration/ refurbishment. The Israelis might disagree. Sources: BAE, “First South Korean F-16s Arrive at BAE Systems for Upgrades”.

May 8/14: Phase 1. BAE Systems Technology Solutions & Service in Rockville, MD receives an unfinalized $140 million firm-fixed-price contract, covering initial development and long lead production of KF-16 upgrades for 134 aircraft. There’s more to come, as the full program is scheduled to be added to this contract in Summer 2014.

$68.6 million is committed immediately. Work will be performed at Ft. Worth, TX and the first upgraded KF-16 aircraft are scheduled for delivery starting 2019. USAF Life Cycle Management Center/WWMK at Wright-Patterson Air Force Base, OH (FA8615-14-C-6023).

Phase 1 contract

Dec 22/13: Phase 1. BAE Systems announces that:

“The Republic of Korea has finalized an agreement with the U.S. government for BAE Systems to perform upgrades and systems integration for its fleet of more than 130 F-16 aircraft. The company will now begin the first phase of the work under contract through the U.S. Department of Defense’s Foreign Military Sales program.”

Jan 24/14 sees Raytheon announce a corresponding signed contract with BAE Systems, without disclosing the amount for Phase 1. Raytheon is a sub-contractor, responsible for the RACR radar, ALR-69A all-digital radar warning receiver, advanced mission computing technology, and weapon systems integration. Phase 2, as proposed, would begin in late 2014, and would involve actual production and installation of the 130 upgrade kits over several years. Sources: BAE Systems, “South Korea Finalizes Agreement For BAE Systems To Perform F-16 Upgrades” | Korea Times, “S. Korea finalizes BAE deal to upgrade F-16s” | Raytheon, “Raytheon secures first international customer for its F-16 RACR AESA radar”.

Nov 25/13: Phase 1. Plans change. Instead of a single FMS case, the US DSCA announces that South Korea’s official request to upgrade 134 KF-16C/D Block 52 fighters has been broken in 2.

Phase 1 is worth up to $200 million, and the DSCA request only covers government and contractor services to support the upgrade’s initial design and development, plus some actual work and infrastructure. On the support side, they’ll produce detailed design requirements and reports for the new system design, computers, displays, sensors and weapons, pilot-vehicle interface, Group A engineering installation design, and support and training requirements. They’ll also initiate software design and development, build an avionics systems integration facility with test stations, and secure some long lead-time materials. That seems like little tangible progress for $200 million, but the DSCA doesn’t mention that 2 ROKAF F-16s will be fully outfitted as prototypes.

Phase 2 would be the full fleet upgrade with the RACR radar, updated avionics etc. That will require a separate DSCA notification.

The Koreans picked BAE Systems Technology Solution & Services, Inc. in Arlington, VA as their contractor back in March, and that’s still true. Once a contract is negotiated, implementation will require 1 BAE representative in Korea as an intermediary. Source: DSCA 13-62.

DSCA: Phase 1 upgrade planning

April 10/13: BAE & RACR AESA. South Korea’s DAPA picks Raytheon’s RACR radar to upgrade its locally-built KF-16C/D Block 52 fighters. Actually getting to a contract will be a bit more work. The ROK is using a hybrid Foreign Military Sale (FMS) structure, which retains the USAF’s role as the contract manager, but left the ROKAF to manage the selection process and decision. The ROK has made its picks, and the procedural outcome of the current government-to-government negotiations will be a single FMS case and US DSCA export notice that covers both the lead contractor for the overall KF-16 upgrade (BAE picked, confirmed no contract yet), and the provision of the AESA radar component (Raytheon picked). Once the mandatory 30-day post-notice period has passed, contracts can be issued and work can begin.

Subject to that process, Raytheon will deliver 134 RACR systems to the ROKAF, beginning in late 2016. The ROKAF received a total of 140 F-16 Block 52s/”KF-16s” under the Peace Bridge II and III contracts, on top of the original 40 F-16C/D Block 32s in Peace Bridge I. Some losses are inevitable, from landing mishaps or on-base damage to full-on crashes into the Yellow Sea. The first KF-16s were delivered almost 20 years ago in 1994, and the radar numbers could be taken as a de facto acknowledgement that the ROKAF has about 130-134 KF-16s left in inventory.

This contract’s scope includes “AESA radar development, production of test assets for the system design and development program, and production.” Discussions with Raytheon clarified that this development and testing applies only to integration with the ROKAF’s exact KF-16 configuration, which will differ even from other F-16C/D Block 52s. RACR itself is a finished product. Raytheon release | Raytheon feature.

BAE picked, RACR AESA for KF-16s

April 4/13: Cruise missiles. The ROKAF has taken about 5 years (q.v. May 18/11, April 25/08 entries), but they appear to have picked their long-range cruise missile: Taurus’ KEPD 350, with an expected order of 200 weapons. An ROKAF officer is quoted as saying that they “urgently need more long-range air-to-surface missiles due to the mounting nuclear threat and the increasing possibility of provocations from North Korea.”

It was clear from the outset that the ROKAF was looking beyond the 40 or so Boeing AGM-84K SDLAM-ER missiles in its arsenal, with particular interest in Lockheed Martin’s AGM-158 JASSM/JASSM-ER. Unfortunately, the current administration has made it difficult for South Korea to join Australia as a JASSM export customer. Parliamentary defence committee member Kim Kwan-jin is quoted as saying that:

“U.S. missiles were one of the options we were considering, but because it is difficult for them to be sold to Korea, the only option we have is the Taurus.”

Chalk up another “own goal” for American weapons export processes and administration. The KEPD 350 is currently integrated with the Tornado and F/A-18 Hornet, is partially integrated with Saab’s JAS-39 Gripen, and is expected to be integrated with the Eurofighter by 2015 or so. The ROKAF will have to fund additional integration and testing on its own, in order to use the new missile with its F-15Ks and KF-16s.

Technically, the ROKAF could have ordered MBDA’s Storm Shadow and paid for its integration instead. The thing is, it’s more expensive to buy, thanks to an added level of stealth that isn’t really helpful against North Korea. Storm Shadow also lacks the KEPD 350’s void sensing fuze, which is especially useful against the multi-level bunkers so beloved of North Korea’s tyranny. The KEPD 350’s 500 km/ 310 mile range matches or exceeds the Storm Shadow’s, and almost doubles the SLAM-ER’s reach. Chosun Ilbo | Reuters.

Cruise missile picked: Taurus’ KEPD 350

2011 – 2012

BAE picked for overall KF-16 upgrade; JDAM capability added; South Korea looking for long-range cruise missiles; AESA radar competition. KF-16D, armed
(click to view larger)

July 31/12: South Korea picks BAE Systems as the preferred bidder for a 1.3 trillion won (about $1.05 billion) project to upgrade the KF-16s’ mission computers, operating systems, ethernet and other wiring, Link-16/MIDS, etc. They’ll also work to incorporate an AESA radar, once DAPA makes its choice between Raytheon (RACR) and Northrop Grumman (SABR). This isn’t completely unexpected. BAE has won related F-16 work in the USA and Turkey, and already provides about 40% of the mission equipment in the global F-16 fleet.

“Baek Yoon-hyeong, spokesman for the Defense Acquisition Program Administration (DAPA), said his agency will send a letter of request to the U.S. government in early August for a U.S. foreign military sale (FMS) of the BAE’s KF-16 upgrade package… “DAPA is expected to ink the deal with the U.S. government in December this year,” Baek said, adding that the multi-year project calls for upgrading some 130 KF-16 fighters…

Joe McCabe, president of BAE’s South Korea office, said the strength of his company’s offer was flexibility in terms of technology transfer. He said BAE would seek the U.S. government’s approval for the sharing of share codes of F-16 flight and weapon control operational flight programs with Korea.”

Sharing codes would be a big deal, because it would allow South Korea to integrate its own weapons onto the jets without outside assistance. If negotiations with BAE fail, F-16 manufacturer Lockheed Martin could step back into the picture, but that seems unlikely. A contract is expected by the end of 2012. If and when it’s signed, most work will be performed in Fort Walton Beach, FL; San Antonio, TX; and Warner Robins, GA, with some additional work at the company’s aviation hangers in Mojave, CA and Crestview, FL. BAE Systems, who is recruiting | Korea Times | AFP | Sky News Australia | Wall Street Journal.

BAE picked for deep upgrade

July 12/12: AESA. Flight International reports that South Korea’s F-16 upgrade RFP involved 132 F-16s, and required a full suite of AESA radar modes, including the interleaving of air-to-air tracking and air-to-ground mapping.

It reportedly left out advanced modes like electronic attack/ protection, but did require an industrial offset package worth 50% of the value of the contract. Raytheon VP of international strategy and business development Jim Hvizd says that they’ll transfer some hardware production to the ROK if they win.

March 14/12: Upgrade lead? Lockheed Martin and BAE are both pushing to perform South Korea’s KF-16 upgrades, which could run up to $1.6 billion for 134 KF-16s. It’s part of a wider competition in this area between the 2 firms. BAE’s recent wins in providing fire-control and advanced ethernet capabilities for 270 US ANG F-16s, and some Turkish planes, sends notice that Lockheed can expect competition in Taiwan, South Korea, and Singapore.

In South Korea, DAPA has reportedly accepted bids from both firms, and is expected to pick a winner for the US government to negotiate with by summer 2012. South Korea wants access to AESA technologies, which neither BAE or Lockheed can provide, but Lockheed Martin’s pedigree in advanced avionics may trump BAE’s edge in advanced ethernet networking systems. Defense Update.

Nov 22/11: AESA RFP. Raytheon declares that it is “responding to the Republic of Korea’s official launch of the F-16 radar upgrade competition with the Raytheon Advanced Combat Radar system (RACR).”

RACR is designed as a drop-in AESA radar for F-16 fighters, and is based on the technologies in the AN/APG-79 radar that equips US Navy Super Hornets. No word yet on other competitors from Israel (vid. earlier entries) or elsewhere.

AESA upgrade RFP

Oct 27/11: New weapons? Fight International reports on the specifications process for South Korea’s proposed KF-X fighter. The part of the vision that matters to the KF-16 fleet involves a complementary set of South Korean weapons. LiG Nex1 would develop a compatible line of short and medium range air-to-air missiles, strike missiles, and precision weapons to complement the DAPA procurement agency’s 500 pound Korea GPS guided bomb (KGGB).

That weapons array may well survive as a program, even if KF-X itself crashes and burns. Which means DAPA will be thinking hard about how to include compatibility in the KF-16 upgrade program.

May 18/11: Cruise missiles. South Korea is looking for advanced cruise missiles to equip its aircraft. South Korea’s F-15K Slam Eagles are so known because they can carry the AGM-84K Standoff Land Attack Missile – Expanded Response (SLAM-ER), a Harpoon derivative with extra range and dual GPS/IIR guidance. The ROKAF has been looking to buy Lockheed Martin’s stealthy AGM-158 JASSM cruise missile for its fleet of F-15Ks, and presumably its KF-16s as well.

The missiles would give South Korea a way of striking even North Korea’s most heavily defended targets if necessary, while remaining out of range of the North’s air defenses. Indeed, it recently prosecuted an ex-ROKAF Colonel who leaked information about its JASSM plans. JASSM’s long history of technical difficulties have reportedly given South Korea’s DAPA procurement agency pause, however, and an anonymous DAPA official now says that a broader RFP will go out in June 2011.

Likely contenders include Lockheed Martin’s JASSM and JASSM-ER, Boeing’s SLAM-ER, MBDA’s Storm Shadow, the MBDA/Saab Taurus KEPD-350, and Raytheon’s JSOW-ER. Of these contenders, Boeing, Lockheed, and Raytheon have the advantage of owning platforms that have already been integrated for use on the F-16 and F-15 Strike Eagle. MBDA’s products would incur integration costs, but it’s possible that their Storm Shadow’s combat-proven high-end capabilities, or KEPD-350’s combination of reliable capability and lower cost, could still make them attractive buys. Yonhap News | Flight International.

Feb 8/11: JDAM GPS. The Chosun Ilbo quotes the South Korean ROKAF, who says it has integrated the 2,000 pound GBU-31 JDAM GPS-guided bomb with its KF-16 fighters, as well as its F-15K “Slam Eagles.” After developing the software, the ROKAF successfully carried out 3 tests, and finished pilot training at the end of January 2011.

Looks like the F-16 upgrades to allow GPS-guided weapons (vid. May 26/09 entry) have been performed. The report also mentions JDAM wing kits, which are absent from normal JDAMs – but not from the locally-developed KGGB extended range 500-pound GPS-guided bomb.

2009 – 2010

Peace Bridge I F-16C/D Block 32s to be upgraded; KF-X delays make F-16C/D Block 52 upgrades more attractive. ROKAF F-16C, CBU-97s
(click to view full)

June 15/10: KF-X. Indonesia and South Korea will produce a KF-X jet together, with the aim of bringing it into service beginning around 2020. South Korea has bowed to realism and greatly reduced the specifications. Instead of trying to develop an F-35 or F-22 analogue, KF-X aims to begin with its FA-50, and improve on that to produce a jet that’s roughly equivalent to an F-16C/D Block 50, or a Chinese J-10.

The KF-X partners don’t expect to even begin fielding until 2020, and they’ll only reach that date in the unlikely event that technical issues don’t delay the project. That timing makes KF-16 upgrades more attractive as an interim measure. Read “” for full coverage.

Oct 22/09: From KF-X to KF-16+? Flight International reports that the stalled KF-X indigenous fighter program, is contributing to renewed assessments of KF-16 upgrades, in order to keep the existing fighters in service for another decade. KF-X has been hampered by the economic crisis, and by a mismatch between an ambitious wish list and realistic costs. If the ROKAF’s focus shifts to KF-16 upgrades as a substitute, upgraded radars and avionics are said to be the priorities.

The report adds that the Raytheon Advanced Combat Radar (RACR) is the only AESA option that the US government has declared to be available for export, and is specifically designed as a drop-in upgrade for the F-16. Note that Northrop Grumman also has its scalable agile beam radar (SABR) drop-in AESA option. Flight International does not cover South Korea’s partnerships with IAI Elta, and the possibility of extending the EL/M-2032 partnership around EL/M-2052 AESA technology.

The other question involves engines. Seoul has opted for a mix the latest GE’s F110 and Pratt & Whitney F100 engines in its Boeing F-15K fighters, and upgrading KF-16 engines to a variant that matches its F-15s would offer longer engine life, and fleet commonality.

July 23/09: EL/M-2032 radar deal. The Korea Times reports that South Korea’s LIG Nex1 will sign a deal with Israel’s IAI Elta Systems on Sept 3/09. That deal will involve the first phase of development for an indigenous radar based on the EL/M-2032 mechanically scanned phased array radar, to equip T/A-50 and F/A-50 aircraft.

An official from the ROK’s DAPA procurement agency told the Times that the radar is expected to be built by the end of 2010, and enter service in 2011. In the mid- to long-term, sources told The Kora Times that the domestically-built radar is likely to be installed on upgraded KF-16 fighters. The Times adds that the effort may even lead to Korean development of an active electronically scanned array (AESA) radar under future agreements with IAI Elta, who has also developed the EL/M-2052 AESA. That positions the EL/M-2032 as a potential Plan B for the KF-16s, and could even make IAI Plan A if AESA cooperation picks up.

F-16: AMRAAM launch
(click to view full)

May 26/09: The US Defense Security Cooperation Agency announces the South Korea government’s official request for equipment and services to support the upgrade of 35 F-16 Block 32 Aircraft. The estimated cost is $250 Million.

The announcement is as significant for what it does not contain, as it is for the few details it does mention. There is no mention of radars, which would require notification. Instead, the announcement simply mentions a request:

“…to support the upgrade of 35 F-16 Block 32 aircraft to allow employment of Joint Direct Attack Munitions, Advanced Medium Range Air-to-Air Missiles [DID: AIM-120 AMRAAM], Improved Data Modem, and Secure Voice capabilities…”

The contract is likely to involve wiring, avionics and computing module upgrades, including the installation of MIL-STD-1760 databuses to accommodate GPS-guided weapons like JDAM, or the WMD variant of the CBU-97 cluster bomb. Test and support equipment, spare and repair parts, and other forms of support are also part of this request. The prime contractor will be F-16 manufacturer Lockheed Martin Aeronautics Company in Fort Worth, TX, and a follow-on contract would require temporary travel for U.S. Government or contractor representatives to the Republic of Korea for in-country support.

The lack of any radar request has 3 possible meanings: 1. Speculation that Korean-Israeli defense ties are about to take another step forward, via a contract for IAI Elta’s EL/M-2032 radars; 2. An AESA radar comeptition to follow; or 3. The low-end, non KF-16 part of the fleet will be brought this high and no higher.

Weapon upgrade request

May 1/09: The Korea Times reports that the ROKAF is looking to upgrade its F-16s, but is having problems obtaining the advanced AESA radars it wants. Israel’s EL/M-2032 radar is mentioned as a likely upgrade instead.

Appendix A: The Long Road to AESA EL/M-2032
(click to view full)

In 2013, South Korea picked their AESA radar. The challenge has been getting to this point.

A 2009 Korea Times report said that US weapons export restrictions were a problem, and when an official 2009 request to the USA didn’t include radars, it lent weight to quotes like this:

“The Air Force actually wanted the more advanced U.S. active electronically scanned array (AESA) radar but modified the plan due to the U.S. law forbidding the export of state-of-the-art and sensitive weapons systems, [the military source] said.”

In the wake of those reports, other reports focused on a non-AESA alternative. IAI’s EL/M-2032 radar has been exported to several countries for use on several different aircraft types, and equips some F-16s. It will equip the ROKAF’s future FA-50 lightweight fighters, and was said to be the basis for a jointly-developed upgrade to ROKAF KF-16s as well.

IAI’s M-2032 radar is still slated to equip the FA-50, in partnership with Korea’s LIG Nex1. By 2011, however, South Korea’s radar options for its F-16 fleet were growing. Development and fielding of AESA radars was underway in several countries, Raytheon and Northrop Grumman had finished private development of drop-in AESA upgrades for F-16s, and the USA had re-thought its position on exporting that equipment to South Korea. A 2011 RFP focused on American AESA radars, therefore, with provisions for a full suite of air and ground radar modes, and industrial offset provisions that were designed to help South Korea gain some expertise manufacturing AESA components.

Northrop Grumman’s SABR and Raytheon’s RACR were the principal competitors in Korea, as they are in Singapore, Taiwan, and in the US Air National Guard’s proposed upgrade. The US State Department has yet to issue a formal export request for the ROK, but after the September 2011 DSCA announcement of an AESA upgrade for Taiwan’s F-16s, export approval for South Korea is expected to be a mere formality.

Additional Readings


Categories: News

India Ordering, Modernizing SU-30MKIs

Mon, 10/20/2014 - 16:39
Indra Dhanush 2007
(click to view full)

India’s SU-30MKI fighter-bombers are the pride of its fleet. Below them, India’s local Tejas LCA lightweight fighter program aims to fill its low-end fighter needs, and the $10+ billion M-MRCA competition is negotiating to buy France’s Rafale as an intermediate tier.

India isn’t neglecting its high end SU-30s, though. Initial SU-30MK and MKI aircraft have all been upgraded to the full SU-30MKI Phase 3 standard, and the upgraded “Super 30″ standard aims to keep Sukhoi’s planes on top. Meanwhile, production continues, and India is becoming a regional resource for SU-27/30 Flanker family support.

India’s Flanker Fleet SU-30MKs & Mirage 2000s
(click to view full)

India originally received standard SU-30MKs, while its government and industry worked with the Russians to develop the more advanced SU-30MKI, complete with innovations like thrust-vectoring engines and canard foreplanes. The Su-30MKI ended up using electronic systems from a variety of countries: a Russian NIIP N-011 radar and long-range IRST sensor, French navigation and heads-up display systems from Thales, Israeli electronic warfare systems and LITENING advanced targeting pods, and Indian computers and ancillary avionics systems.

Earlier-model SU-30MK aircraft and crews performed very well at an American Red Flag exercise in 2008, and the RAF’s evident respect for the SU-30 MKIs in the 2007 Indra Dhanush exercise is equally instructive. The Russians were intrigued enough to turn a version with different electronics into their new export standard (SU-30MKA/MKM), and even the Russian VVS has begin buying “SU-30SM” fighters.

So far, India has ordered 272 SU-30s in 4 stages:

1. 50 SU-30MK and MKIs ordered directly from Russia in 1996. The SU-30MKs were reportedly modernized to a basic SU-30MKI standard.
2. Another 40 SU-30MKIs, ordered direct in 2007. These machines have reportedly been upgraded to the “Phase 3″ standard.
3. A license-build deal with India’s HAL that aims to produce up to 140 more SU-30MKI Phase 3 planes from 2013-2017
4. An improved set of 42 HAL-built SU-30MKI “Super 30s”. A preliminary order was reportedly signed in 2011, but the final deal waited until December 2012.

The Super 30 represents the next evolution for the SU-30MKI. Upgrades are reported to include a new radar (probably AESA, and likely Phazotron’s Zhuk-AE), improved onboard computers, upgraded electronic warfare systems, and the ability to fire the air-launched version of the Indo-Russian BrahMos supersonic cruise missile.

India may eventually upgrade its earlier models to this standard. For now, they represent the tail end of HAL’s assembly schedule, as the assembly of standard SU-30MKIs continues. The big challenge for HAL is to keep that expansion going, by meeting India’s production targets.

The overall goal is 13-14 squadrons by 2017. Based on 3rd party sources, IAF SU-30MKI squadrons currently comprise:

  • 2 Wing’s 20 Sqn. “Lightnings” & 30 Sqn. “Rhinos”, at Lohegaon AFS in Pune (W)
  • 11 Wing’s 2 Sqn. “Winged Arrows”, at Tezpur AFS in Assam (NE, near Tibet)
  • 15 Wing’s 8 Sqn. “Eight Pursuits” & 24 Sqn. “Hawks”, at Bareilly AFS in Uttar Pradesh (NC, near W Nepal)
  • 14 Wing’s 102 Sqn. “Trisonics”, at Guwahati/Chabua AFS in Assam (NE, near Tibet)
  • 27 Wing’s 15 Sqn. “Flying Lancers”, at Bhuj AFS in Gurajat (NW)
  • 34 Wing’s 31 Sqn. “Lions” & 220 Sqn. “Desert Tigers”, at Halwara AFS in Punjab (NW)
  • 45 Wing’s 21 Sqn. “Ankush”, at Sirsa AFS in Haryana (NW)

Initial SU-30 MKI squadron deployments had been focused near the Chinese border, but the new deployments are evening things out. There have also been reports of basings in other locations, though the number of active squadrons suggest that these are yet to come:

  • Bhatinda AFS in Punjab (NW, currently 34 Wing’s 17 Sqn. “Golden Arrows” MiG-21s)
  • Jodhpur AFS in Rajasthan (NW, currently 32 Wing’s MiG-21 and MiG-27 squadrons)
  • Thanjavur AFS in Tamil Nadu (SE) needs to finish building out, but is expected to permanently house SU-30MKIs by 2018. Its SU-30MKIs will offer India comfortable strike coverage of Sri Lanka, including the major southern port of Hambantota that’s being built with a great deal of Chinese help.

Contracts & Key Events 2013 – 2014


Oct 14/14: Crash. An IAF SU-30MKI crashes about 20 km from Pune airbase. Wing Commander Sidharth Vishwas Munje survived the type’s first crash in Indian service as a co-pilot, which was also a dangerous low-altitude ejection. The pilots apparently did quite a job, as Shiv Aroor reports:

“They grappled to control a doomed fighter and eject only after ensuring it would glide into a sugarcane field, away from a built-up area that may have been the site of impact had the pilots chosen to eject earlier…. The IAF is still piecing together the full sequence of events, though it appears clear at this time that Munje and his junior had mere seconds to take a decision after lift-off.”

Both escaped safely. So far, the flight data recorder isn’t indicating engine problems, or pilot error, which is fixing suspicion on the fly-by-wire system. The Court of Inquiry has just begun its investigation, but this wouldn’t be the 1st time FBW has been an issue (q.v. Aug 5/12). At this point, however, it’s all conjecture. Sources: India PIB, “IAF SU30 Crashed” | Livefist, “Twice Lucky: Pilot In Yesterday’s Su-30 Crash Also Survived 1st MKI Crash In 2009″ and “Flanker Trouble: Did Fly-By-Wire Glitch Crash IAF Su-30?” | Bangalore Mirror, “No engine failure, pilot error in Sukhoi crash” | Deccan Chronicle, “Cause of Sukhoi-30 crash unclear”.

Aug 4/14: Engine issues. NPO Saturn has proposed a set of modifications designed to reduce mid-flight AL-31FP engine failures (q.v. July 20/14), and the IAF has accepted it. The modified engines will be tested first, then the refit of India’s 200 plane fleet will be carried out in batches over the next 18-24 months at HAL’s Sukhoi engine plant in Orissa. The Russians will reportedly include modified engines in India’s remaining 72 kits. Sources: Tribune News Service, “Engine rejig to cut Su-30 burnouts”.

July 20/14: Engine issues. Reports indicate that the IAF fleet’s problems aren’t limited to mission computers and displays (q.v. March 15/14). It also has a problem with engine failures in flight. Fortunately, as a 2-engine fighter, it can generally land on 1 engine, and the accident rate is low. The flip side is that this isn’t something you want to happen in a dogfight. Worse, every time this happens, the engine has to be taken out, tested, fixed, and put back. That takes a minimum of 4-5 days, which cuts readiness rates.

“The IAF has so far not arrived at a conclusion of its findings, but as a precautionary step, it has started servicing the engine after 700 hours instead of the mandated 1,000 hours of flying, adding to the non-availability of the aircraft…. The IAF had told Russians after studying each failure in detail that Sukhoi’s engines – AL-31FP produced by NPO Saturn of Russia – had been functioning inconsistently for the past two years (2012 and 2013). The number of single-engine landings by planes in two years is high and not healthy. It lowers the operational ability of the fleet, besides raising questions about war readiness, said sources.”

sources: Tribune News Service, “Su-30MKI engine failures worry IAF; Russia told to fix snag”.

June 16/14: Display fix. HAL chairman R K Tyagi discusses the issue of SU-30MKI display blanking and mission computer failure (q.v. March 15/14):

“The issue has been addressed by upgrading the software by the Russian side and replacing the mission computer and HUD wherever it was found unservicable during service checks [in India].” He further said that following the software upgrade and other service action taken, no problems concerning the Su-30 fighters has been reported from any IAF base.”

Sources: Defense World, “Software Upgrade Solves IAF Su-30MKI’s Display Problem”.

May 5/14: Astra AAM. An SU-30MKI successfully test-fires an Indian Astra BVRAAM (Beyond Visual Range Air-to-Air Missile), marking the next stage beyond the avionics integration and seeker tests that went on from November 2013 – February 2014. The firing marks a significant milestone for India.

The SU-30MKI will be the 1st fighter integrated with India’s new missile, giving its pilots an indigenous option alongside Russia’s R77 / AA-12 missiles. It will also be integrated with India’s LCA Tejas light fighter, alongside RAFAEL’s Derby. Sources: The Hindu, “Astra successfully test-fired from Sukhoi-30 MKI”.

April 22/14: Waste. India’s Business Standard discusses HAL’s planned schedule, and explains some of the difficult aspects of their contract with Russia. Deliveries currently sit at 15 per year, but completion of the program will be late. Final delivery is now scheduled for 2019, instead of 2016-17.

The second issue is price, which began at $30 million but rose to $75 million each, even though most work is being done in a lower-cost country now. The key is the contract, which mandates that all raw materials must be sourced from Russia. Of the SU-30MKI’s roughly 43,000 components, there are 5,800 large metal plates, castings and forgings that must come from Russia. Another 7,146 bolts, screws, rivets, etc. have similar stipulations, and Russia also produces major assemblies like the radar and engines. Those plates, castings, and forgings are a source of considerable waste:

“For example, a 486 kg titanium bar supplied by Russia is whittled down to a 15.9 kg tail component. The titanium shaved off is wasted. Similarly a wing bracket that weighs just 3.1 kg has to be fashioned from a titanium forging that weighs 27 kg…. manufacturing sophisticated raw materials like titanium extrusions in India is not economically viable for the tiny quantities needed for Su-30MKI fighters.”

An assembly line that wasn’t state-owned wouldn’t be wasting all that left-over titanium. Sources: India’s Business Standard, “Air Force likely to get entire Sukhoi-30MKI fleet by 2019″.

March 29/14: MAFI. India’s Business Standard discusses India’s INR 25 billion “Modernisation of Airfield Infrastructure” (MAFI) project, which is being led by Tata Power’s strategic electronics division. It uses Doppler Very High Frequency Omni-directional Radio Range (DVOR), and Category II Instrument Landing Systems (ILS), allowing direction from 300 km and operations in visibility as low as 300 meters.

Bhatinda is MAFI’s pilot project, and a SU-30MKI was used to test the system on March 25/14. The challenge is that they can only upgrade 5-6 bases at any given time. The eventual goal is 30 IAF and navy bases set up by 2016, including 8 along the Chinese border. By the end of 2019, the goal is to expand MAFI to 67 air bases, including 2 owned by the ministry of home affairs. The larger goal is greater tactical flexibility for all fleets, and the SU-30s will be a major beneficiary. Sources: India’s Business Standard, “First upgraded IAF base commissioned”.

March 15/14: Readiness. India’s Sunday Guardian obtains letters and other documents sent by HAL to its Russian counterparts, pointing to serious maintenance problems with India’s SU-30MKI fleet. Compared with India’s older Mirage 2000 and MiG-29 fleets, whose readiness rates hover near 75%, fully 50% of the SU-30MKIs are considered unfit for operational flying. That’s a strategic-class issue for a country like India, and could provide the missing explanation for reports that India may abandon the joint FGFA/SU-50 5th generation fighter program in order to pay for French Rafale jets.

This isn’t the first time such issues have arisen (q.v. Dec 16/11), and the Russians have general reputation for these kinds of problems. One February 2014 letter from HAL’s Nasik plant reminds the Russians that they’ve been pursuing a critical issue since March 2013, with no reply:

“…multiple cases of repeated failure of Mission Computer-1 and blanking out of Head Up Displays (HUD) and all Multi-Function Displays (MFD) in flight… As the displays blanking off is a serious and critical issue affecting the exploitation of aircraft (it) needs corrective action/remedial measures on priority…”

From a Dec 24/13 letter:

“Due to non-availability of facilities for overhaul of aggregates [aircraft parts], the serviceability of Su-30MKI is slowly decreasing and demand for Aircraft on Ground (AOG) items on the rise…. Huge quantities of unserviceable aggregates [parts] are lying due for overhaul at various bases of IAF…. It appears that Rosboronexport and Irkut Corporation have limited control over other Russian companies [which provide vital parts like engines].”

One reason the MiG-29 fleet is doing better is that India has worked to build infrastructure like local RD-33 engine plants, bypassing the Russians entirely. Russian firms were supposed to set up a SU-30MKI repair-overhaul facility at HAL by December 2013, but that has fallen into a black hole, and so has the posting of aircraft specialists. India itself is often at fault in these scenarios, and indeed they’re reportedly haggling over price – but the specialist support contract reportedly states that they’re to be posted even if price negotiations aren’t finalized. India’s core defense posture demands that they resolve these issues, one way or another. Sources: India’s Sunday Guardian, “Russians go slow, Sukhoi fleet in trouble”.

Serious maintenance & readiness issues

BrahMos brefing

Jan 4/14: Russia and India Report looks at the way the SU-30MKI is changing the IAF’s strategy, citing the huge April 2013 IAF exercise based on “swing forces” in a 2-front war against China and Pakistan. The SU-30MKIs range made them the natural swing force, flying 1,800 km bombing missions with mid-air refuelling. The report also makes an interesting observation:

“There is another ominous angle. India’s Strategic Forces Command (SFC) has asked for 40 nuclear capable strike aircraft to be used conjointly with land-based and submarine launched ballistic missiles. Although it’s not clear whether the IAF or the SFC will operate this mini air force, what is clear is that exactly 40 Su-30 MKIs have been converted to carry the BrahMos. That’s some coincidence.”

Sources: Russia & India Report, “How the Su-30 MKI is changing the IAF’s combat strategy”.

July 11/13: Weapons. Russian BrahMos Aerospace Executive Director Alexander Maksichev promises that 1st test-launch of the BrahMos supersonic cruise missile from an Indian Su-30MKI will be scheduled in 2014. Integration is underway, and 2 SU-30MKIs are being adapted for the missile. Sources: Russia & India Report, “First test-launch of BrahMos missile from Indian Su-30MKI in 2014″.

May 27/13: Infrastructure. The IAF has finished modernizing the old WWI vintage airbase near Thanjavur in the southern state of Tamil Nadu, across the strait from Sri Lanka. A pair of SU-30MKIs took off from the runway as part of the ceremonies, and the base is eventually slated to house a full squadron of the type. The airfield last served as a civil airport in the 1990s, and renovations began in 2006.

Thanjavur was used as an emergency airstrip during flood relief in 2008, but the dedication marks its inauguration as a base for high-performance fighters, which will reportedly include a squadron of SU-30MKIs. They will offer India comfortable strike coverage of Sri Lanka, including the major southern port of Hambantota that’s being built with a great deal of Chinese help. While the runway and other facilities are in place for “lily pad” deployments, Thanjavur AFS still needs flight hangers, avionic bays, labs, fuel dumps and other infrastructure before it will be ready to host SU-30MKI fighters on a permanent basis.
Sources: India MoD, “Antony Dedicates to Nation New Air Force Station at Thanjavur” | Defence News India, “Sukhoi-30MKI’s to dominate South India and Indian Ocean” | The Hindu, “Full-fledged IAF airbase at Thanjavur from May 27″.

2011 – 2012

(click to view full)

Dec 24/12: Super-30s contract. Russia signs over $4 billion worth of defense contracts with India, including the deal for 42 “Super 30″ upgraded SU-30MKIs. Key Super 30 upgrades are reported to include a new radar (probably AESA, and likely Phazotron’s Zhuk-AE), improved onboard computers, upgraded electronic warfare systems, and the ability to fire the air-launched version of the Indo-Russian BrahMos supersonic cruise missile.

Russian sources place the Super 30 deal at $1.6 billion, which is significantly below previous figures. The Hindustan Times places its value at Rs 16,666 crore instead, which is about $3.023 billion at current conversions. The Times’ figure is in line with previous estimates, and is the one DID will use. The planes will arrive at HAL as assembly kits, and will be added to HAL’s production backlog. So far, the company says that they have assembled and delivered 119 SU-30MKIs to the IAF.

Other major agreements signed at the 2012 summit include a buy of 59 more Mi-17 helicopters, and a memorandum of cooperation regarding Russia’s GPS-like GLONASS system. India has indicated that it isn’t looking to add to its Flanker fleet after this deal, but they may choose to modernize older aircraft to this standard. That would keep Russian firms busy for quite some time. Indian Ministry of External Affairs | Hindustan Times | Times of India | RIA Novosti || Pakistan’s DAWN | Turkey’s Hurriyet |
Wall St. Journal.

“Super 30″ contract?

Nov 23/12: More upgrades? Indian media report that India and Russia may be set to sign a $1 billion deal to upgrade the basic avionics of its existing SU-30MKIs, alongside the $3.8 billion “Super 30″ deal. The big deadline date is just before Christmas, when Russia’s Vladimir Putin arrives in India for high-level talks.

The report mentions a SU-30MKI squadron in Jodhpur, near Pakistan, but all other sources offer the same total of 8 current and near-term squadrons without listing this as a Flanker base. 32 Wing’s 32 Sqn. “Thunderbirds”, who are currently listed as a MiG-21bis unit, would be the most likely conversion candidates in Jodhpur. Russia & India Report.

Oct 17/12: Indonesia. During his visit to Jakarta, Indian Defence Minister A K Antony agrees to train and support the Indonesian Air Force’s Flanker fleet. India flies a large fleet of SU-30MKIs, and is conducting manufacturing and final assembly work in India at HAL. They’ve already leveraged that base to provide similar support to Malaysia’s fleet of SU-30MKM fighters, though there are some items like engines that still need to be handled by Russia.

Note that this isn’t a contract just yet. Indonesia needs to firm up its requirements, and a India high-level Indian Air Force team will be sent to finalize the training and spares support package. The move will have an importance that goes far beyond its dollar value, as it’s part of a wider set of enhanced defense cooperation agreements the 2 countries are reportedly pursuing. Indonesia isn’t looking to antagonize China, but China’s aggressive claims in the South China Sea are comparing poorly with India’s support for freedom of navigation, and for multilateral resolution of these disputes under international law. The result is an important Indonesian tilt toward more cooperation with India, which fits very well with India’s own strategic priorities. India MoD | Indian Express | The Jakarta Globe.

Oct 5/12: Infrastructure. Air Chief Marshal NAK Browne offers a window into planned Su-30 deployments:

Code-named Flying Lancers, the process to set up a new 15 Squadron in Punjab would be started in December and become operational by the middle of next year, he said.

“By the end of this year, in December and early next year, we will be inducting a new Su-30 squadron, based in Punjab. That will be the 10th squadron of Su-30s… Two extra squadrons are being raised in the eastern sector…. One more squadron will be based in Punjab and one will be in Thanjavur. Therefore, we will eventually have 13 to 14 squadrons of Sukhois,”

Sources: Hindustan Times, “IAF to modernise, raise four more Su-30MKI squadrons”.

Aug 8/12: Infrastructure. An Indian government response to a Parliamentary question shows that the Thanjavur base is behind schedule:

“Audit Para 2.7 (Inordinate delay in development of Air Bases) of Comptroller and Auditor General Report No. 16 of 2010-11 (Air Force and Navy) had made observations regarding delay in the establishment and activation of air bases at Phalodi and Thanjavur. The delay was due to various factors including change in plans necessitated due to operational requirements of the Indian Air Force, paucity of resources as well as changes in the geopolitical situation.”

Aug 5/12: Air chief NAK Browne confirms that the IAF has identified a “design flaw” with the SU-30 MKI’s Fly-By-Wire system. He says that the planes are still fit to fly, but more checks are being implemented within the fleet, and India has taken the issue up “with the designing agency.”

The implicit but unstated corollary is that the IAF’s fighters will have corresponding flight restrictions and/or changed procedures until the problem is fixed, in order to avoid another crash. Hindustan Times.

March 23/12: Russian order. Russia’s own VVS moves to buy 30 SU-30SM fighters, for delivery by 2015. These planes are a version of the canard-winged, thrust-vectoring SU-30MKI/M variant that was developed for India, and has since been exported to Algeria and Malaysia. Which raises the question: why didn’t Russia buy 30 more SU-35S fighters? A RIA Novosti article offers one explanation:

“Irkut has been churning out these planes for 10 years thanks to its completely streamlined production method. This means that its products are of high quality, relatively cheap… and will be supplied on time.

It is one thing if, in order to make 30 aircraft, you have to breathe life into an idling plant, to fine-tune (or develop anew) your technological method, buy additional equipment, and – still worse – hire personnel. But it’s quite another if you have been manufacturing standardized aircraft for years and years and can easily divert your workforce to produce an “improved” modification for your own country’s Air Force… This approach (buying quickly and on the cheap what can be produced immediately) has been growing in popularity in the Russian military.”

The systems inside will differ, but overall, this is very good news for India. Similar designs have been exported to Malaysia and Algeria, but Russia’s order locks in loyalty within the equipment manufacturer’s home country. Other Russian orders follow, but we won’t be covering them here.

Russia buys

Dec 20/11: Super-30s. Russia has reportedly signed a preliminary deal with India to sell 42 upgraded Su-30MKI “Super 30″ fighters, to be added to HAL’s license production backlog. That brings total Indian SU-30 orders to 272. Price was not reported, but Parliamentary transcripts place the budget for this buy at around $2.4 billion.

The Super 30 deal is 1 of 5 trade & defense deals signed in Moscow during the summit meeting between Indian Prime Minister Manmohan Singh and Russian President Dmitry Medvedev. A proposed nuclear plant deal was not among them. Assam Tribune | Deccan Herald | AP.

Dec 20/11: Cleared for flight. India’s fleet of SU-30MKIs resumes flying, after being informally grounded in the wake of the Pune crash. As for that crash, Daily Pioneer reports that:

“There was a problem in the fly-by-wire system… This is a new thing. Pilot did not get any warning. There were no indications in the cockpit and the aircraft was out of control,” the IAF chief told PTI here. He said the pilot “tried his best to control the aircraft for 15-20 minutes” before ejecting out along with the Weapon Systems Operator (WSO)…”

Dec 16/11: Readiness. The Hindustan Times reports that perennial problems with Russian spares & reliability have become an urgent issue for the SU-30MKI fleet now:

“Prime Minister Manmohan Singh is expected to red-flag [SU-30] serviceability, product support and pending upgrade… at the annual [Russian] summit meeting… Top government sources said that Air Headquarters has urgently requested the Prime Minister to raise the issue of engine serviceability with his Russian counterpart after few incidents of engine failures… the top brass has conveyed to government that “shaft bearing failures” have occurred in some [AL-31FP] engines. “In peacetime, the fighter can land on the other engine but this can be a life and death situation in adverse conditions, said a senior official.”

Dec 13-15/11: An SU-30MKI crashes 25 minutes after takeoff, in the flying area of the Lohegaon IAF base, in Pune. Both pilots ejected safely. This is the IAF’s 3rd SU-30MKI crash; the 1st crash in 2009 was due to a fly-by-wire fault, and the 2nd also happened in 2009 when foreign matter was sucked into the plane’s engine.

In response, A Court of Inquiry (CoI) has been ordered to look into the reasons behind the crash. India also grounds its SU-30MKI fleet, pending maintenance inspections and some idea of what caused this crash. Rediff | Economic Times of India | IBN Live | Indian Express | Hindustan Times

Crash & grounding

Nov 23/11: Industrial. Minister of State for Defence Shri MM PallamRaju is grilled about SU-30 deliveries by Parliamentarians in Rajya Sabha, and explains both the project history, and HAL’s manufacturing responses. So far, he says that “Out of the total 180 aircraft”, India has received 99 SU-30MKIs “till 2010-11″.

That delivery total and date is very ambiguous. It implies orders with HAL for 180 planes, which would entail a 2nd contract for another 40-42 fighters (vid. Aug 9/10 entry). Earlier reports re: HAL deliveries (vid. June 26/10 entry) pegged them at 74 planes from HAL, and the Russian deliveries are expected to wrap up in 2012; 99 total planes from both sources would fit that model, if the answer is read as “99 by the beginning of the 2010-11 fiscal period.” With expected 2010 production of 28 HAL SU-30MKIs, however, a read of “99 of 180 SU-30MKIs delivered as of November 2011″ only makes sense if all the planes he’s referring to are from HAL. HAL’s responses to production delays are said to include:

  • Commissioning of additional tooling jigs & fixtures in manufacturing and assembly Shops.
  • Increased Outsourcing.
  • Development of alternate vendors.
  • Improvements in manufacturing processes & Operations in order to reduce cycle time.
  • Effective monitoring and timely actions through Enterprise Resource Planning (ERP).
  • Recruitment/Redeployment of manpower in critical work Centers.

Oct 11/11: AESA. India is reportedly looking at fitting its Su-30MKIs with Phazotron’s Zhuk-AE active electronically scanned array (AESA) radars, instead of their present Tikhomrov N011M Bars passive mechanically scanned array radars. The switch would improve reliability, radar power, and performance, but the new radars would have to be tied into the combat system, tested for aerodynamic balance and other changes they might create, etc.

The X-band Zhuk-AE can reportedly track 30 aerial targets in the track-while-scan mode, and engage 6 targets simultaneously in attack mode. Aviation Week.

Aug 29/11: Super 30. Russia and India have reached agreement on the technical specification of the Super 30 upgrade, including BrahMos missile integration and an AESA radar. The exact nature of that radar is still in question. Reports to date have discussed an enlarged version of the MiG-35’s Phazotron Zhuk-AE, but Tikhomirov’s NIIP could also be chosen, and the firm demonstrated an improved version at the Moscow Air Show (MAKS 2011). AIN.

2009 – 2010

(click to view full)

Aug 18/10: Defence Minister Antony replies to Parliamentary questions about the “Super 30″ upgrade:

“There is proposal to upgrade the SU-30 MKI aircraft of the Indian Air Force by M/s Hindustan Aeronautics Limited (HAL) with the support of the Russian Original Equipment Manufacturer. The current estimated cost is Rs. 10920 crores and the aircraft are likely to be upgraded in a phased manner from year 2012 onwards.”

Note the word “proposal.” At this point, the estimate in rupees is equivalent to about $2.41 billion.

Aug 9/10: Super 30. Defense minister Antony offers an update re: additional SU-30MKI purchases, in a written Parliamentary reply to Shri Asaduddin Owaisi:

“The Defence Acquisition Council has accepted a proposal for the procurement of 42 Sukhoi-30 MKI aircraft from M/s Hindustan Aeronautics Limited, India. The proposal is being further progressed for submitting to the Cabinet Committee on Security. The estimated cost of the project is Rs. 20,107.40 crores [DID: about $4.36 billion, or about $104 million per plane] and the aircraft is planned to be delivered during 2014-2018. The proposal is being progressed as a repeat order from M/s Hindustan Aeronautics Limited, India under the Defence Procurement Procedure-2008.”

That’s even higher than the estimates in June 2010, when the story broke (vid. June 26/10 entry). The cost of this deal soon attracts controversy, especially given that a 2007 deal for 40 SU-30MKIs cost only $1.6 billion/ Rs 7,490 crore. That prompts speculation that these will be upgraded “Super 30″ aircraft. DNA India.

July 4/10: Upgrades. India’s Economic times quotes unnamed sources within India’s MoD:

“As part of IAF’s modernisation programme, we are going to upgrade 50 Sukhoi-30 MKI aircraft with help of original equipment manufacturers (OEMs) from Russia… The ones to be upgraded are from the first phase [from Russia, before the HAL order, of mixed SU-30MKs and MKIs] and the project is likely to be completed in the next three to four years…”

Details are consistent with earlier “Super 30″ reports. Is there, in fact, a contract to do this work? Not yet.

June 26/10: Super 30. The Times of India reports that India’s Cabinet Committee for Security has cleared a nearly Rs 15,000 crore (about $3.3 billion) order for another 42 Sukhoi-30 MKI fighters, for delivery by around 2018:

“The present order for 42 fighters was originally supposed to be 40, but two more were added to the order book to make up for the two crashed fighters. A senior official said that HAL is expected to complete all the SU-30 MKI orders by 2016-17 period… last year it delivered 23 of these fighters, this year it is expected to produce 28. HAL has already supplied 74 of these fighters.”

May 30/10: Super 30. India Today magazine reports that India has placed orders with the Russian defense industry to modernize 40 Su-30MKI Flanker-H fighters to “Super 30″ status, with new radars, onboard computers, and electronic warfare systems, and the ability to fire the air-launched version of the Indo-Russian BrahMos supersonic cruise missile. RIA Novosti.

Dec 7/09: Industrial. Defense minister Antony offers an update on the existing program to assemble SU-30MKIs in India:

“In addition to licensed manufacture of 140 SU-30 aircraft by M/s Hindustan Aeronautics Limited (HAL), a contact for procurement of additional 40 SU-30 MKI was signed with M/s HAL in 2007. Out of these three aircraft have been delivered to the Indian Air Force and delivery of the remaining aircraft is expected to be completed by 2011-12″

Nov 30/09: A SU-30MKI crashes near the firing range at Pokharan, triggering a fleet-wide grounding and investigation. Both pilots eject safely, and initial suspicion focuses on the plane’s engine. MoD announcement | Indian Express re: Grounding | Indian Express.

An SU-30 had also crashed on April 30/09, reportedly due to the failure of its fly-by-wire system. These 2 accidents are the only SU-30 losses India has experienced.

Crash & grounding

Nov 12/09: Sub-contractors. India’s Business Standard reports that the SU-30MKI program is about to include Samtel Display Systems’ multi-function displays; their first delivery will equip 6 Su-30MKIs in lieu of Thales systems manufactured under license by Hindustan Aeronautics Ltd in Nashik. Samtel has a joint venture with Thales, and went forward on its own through the 5-year road to “airworthy” certification from DRDO’s CEMILAC. A public-private partnership with HAL has created Samtel HAL Display Systems (SHDS), which may create wider opportunities for Samtel’s lower-priced displays – if both delivery and quality are up to par on the initial SU-30MKI orders.

The article notes that Samtel has succeeded, in part, by embracing obsolete technology that others were abandoning (CRT displays), even as it prepares to leapfrog LCD displays with Organic Light Emitting Diodes. The road to military certification isn’t an easy one, though:

“Starting with liquid crystal display (LCD) screens, commercially procured from Japan and Korea, Samtel has ruggedised them for use in military avionics. The display must be easily readable even in bright sunlight; it must be dim enough for the pilot to read at night without losing night vision; it must work at minus 40 degrees Centigrade when conventional LCD screens get frozen solid; and it must absorb the repeated violent impacts of landing on aircraft carriers.”

Oct 9/09: Super 30. The Indian Ministry of Defence issues a release regarding the 9th meeting of the Russia-India Inter-Governmental Commission on Military-Technical Cooperation on Oct 14-15/09:

“The modernisation of the SU 30 MKI aircraft is also expected to come up for discussion in the Commission’s meeting. The aircraft, contracted in 1996, are due for overhaul shortly and the Russia side have offered an upgrade of the aircraft with incorporation of the latest technologies during the major overhaul.”

Obvious areas for modernization would include the aircraft’s N011M Bars radar, now that Russian AESA designs are beginning to appear. Engine improvements underway for Russia’s SU-35 program would also be a logical candidate for any SU-30MKI upgrades. The most important modification, however, might be an upgraded datalink that could reduce the level of coalition fratricide observed in exercises like Red Flag 2008. Indian MoD | RIA Novosti.

Oct 2/09: +50 more? Jane’s reports that India is looking to buy another 50 SU-30MKIs, quoting Air Chief Marshal P V Naik who said that the IAF was “interested.” This comes hard on the heels of comments that the IAF’s fleet strength was 1/3 the size of China’s, coupled with comments that the IAF would eliminate its fighter squadron deficit by 2022.

Interest is not a purchase, but reported prices of $50-60 million for an aircraft that can can equal or best $110-120 million F-15 variants do make the SU-30 an attractive buy, even relative to options like the foreign designs competing for the MMRCA contract. Forecast International offers an additional possibility, citing the context within which that interest was expressed, and wondering if the new SU-30KIs might be tasked with a nuclear delivery role. Their range and payload would certainly make them uniquely suited to such a role within the IAF.

If a purchase does ensue, it would be good news for a number of players, including Indian firms that have contributed technologies to the SU-30MKI design. Samtel Display Systems (SDS), who makes avionics for the SU-30MKI’s cockpit, would be one example of a growing slate of private Indian defense firms with niche capabilities. Construction firms may also benefit; The Deccan Herald reports that:

“The IAF is keeping one squadron of its most advanced Su-30 MKI fighters in Bareilly whose primary responsibility is the western and middle sector of the LAC. Similarly a Su-30 base is being created in Tezpur, Assam, for the eastern sector [near China].”

See: Jane’s | Russia’s RIA Novosti | Times of India | Associated Press of Pakistan | Pakistan’s Daily Times | Avio News | Forecast International | IAF size comments: Daily Pioneer and Sify News | Frontline Magazine on Indian-Chinese relations.

2000 – 2008

IL-78 refuels SU-30MKIs

March 31/06: Speed-up +40. India’s Cabinet Committee on Security approves the speeded-up delivery plan. The IAF signs revised contracts for 140 previously-ordered SU-30MKIs, to be delivered by 2014-15. A 2007 contract adds another 40 SU-30MKIs, by the same deadline, but those are ordered direct from Russia. Source.

180 SU-30MKIs

June 2005: Speed it up. IAF Headquarters looks at its fleet strength and planned aircraft retirements, and asks HAL if it could deliver all of the SU-30MKIs by 2015 instead. HAL responds with a proposal that they believe will get them to a full-rate assembly flow of 16 planes per year. Source.

Dec 12/04: Irkut Corp. announces that they have begun delivery of final “3rd phase” configuration Su-30MKIs to the Indian Air Force.

Initial deliveries involved aircraft optimized for aerial combat, while Phase 2 added more radar modes for their NIIP N-011 radars, TV-guided Kh-59M missiles, the supersonic Kh-31A/ AS-17 Krypton multi-role missile, and simultaneous attack of 4 aerial targets by guided air-to-air missiles. Phase 3 Su-30MKIs fully implement all navigation and combat modes in the contract, including laser-guided bombs, weapon launch in thrust-vectoring “supermaneuverability” mode, and engagement of up to 4 aerial targets in front or rear. Ramenskoye Design Bureau (RPKB) is responsible for the avionics and software, and also provide the Sapfir maintenance and mission planning ground suite.

SU-30MKI Phase 3 deliveries begin

Oct 6/04: The SU-30MKI’s Saturn AL-31FP engines have their “Certificate of the AL-31FP life-time” signed by the leadership of the Russian Ministry of Defence, the Central Aviation Engines Institute (CIAM), NPO Saturn, UMPO, SUKHOI Corporation, and IRKUT Corporation.

The statistics are: MTBO (Mean Time Between Overhauls) 1,000 hours, and 2,000 hours assigned life. The thrust-vectoring nozzles take a beating, though, with only 500 hours MTBO. Irkut Corp.

Engines certified

January 2001: Indian government formally approves the SU-30MKI project, with an expected full-rate assembly flow of 12 planes per year, beginning in 2004-05 and continuing until 2017-18. Source.

Dec 18/2000: India’s Cabinet Committee on Security (CCS) approves the project to assemble the SU-30MKIs in India. Source.

Oct 4/2000: Russia and India sign an Inter-Governmental Agreement (IGA) for transfer of License and Technical Documentation to India, for “production of 140 SU-30 MKI Aircraft, its Engines and Aggregates.” Source.

SU-30MKIs: initial local assembly order

Additional Readings The SU-30 MKI

Related IAF Programs

  • DID – India’s M-MRCA Fighter Competition. Intends to buy 126 aircraft that will be very competitive with SU-30MKI performance, but will cost much more – $18 billion has been mentioned. Dassault’s Rafale is the preferred bidder. Essentially pays more up front to have a SU-30MKI analogue with better electronics, and much better support and readiness.

  • DID – PAK-FA/FGFA/T50: India, Russia Cooperate on 5th-Gen Fighter. Will probably become the SU-50. Early read is F-35 class stealth and F-22 class aerial performance, probably slightly less than its cited peers in both areas. SU-30MKI troubles may be affecting India’s willingness to spend the billions of development and acquisition dollars required.

News & Views

Categories: News

Iraq/Syria: Is ISIS Flying Jets? UK to Deploy Reapers

Mon, 10/20/2014 - 14:58

  • Is ISIL operating jets, as the Syrian Observatory for Human Rights claims? There’s a Youtube video purportedly showing a jet landing at an ISIS-controlled base, but USCENTOM says they haven’t seen any evidence.

  • This is a head-scratcher. Iraq floundered against a purged and weakened Iranian military for years, then their generals join ISIS which quickly becomes really competent? From which we may infer the “Saddam performance penalty” levied on Iraq’s Ba’athist military. Meanwhile, the Maliki performance penalty still applies to the Shi’ite region’s regime, and will take some time to undo.

  • The UK is deploying its Reapers to fight ISIL. They can’t bring them home to Britain because of certification issues in civil airspace, so they might as well send them back to Iraq. The Royal Air Force doesn’t say where, but note the mention of an assistance program involving the Kurds.

UK Business

Britain’s Ministry of Defence updated its business plan for small and medium-sized enterprises. At least 7,000 SMEs were direct suppliers to MOD in 2013/14 according to that memo.

US Business

  • The US Air Force Materiel Command is is seeking information from sources that may have the ability to rapidly develop air delivered weapons systems requirements, studies and demonstrations. Here’s their “agile acquisition” presolicitation for large businesses. Agile, up to a point: foreign participation is not authorized.

  • Boeing BDS boss Chris Chadwick was at the CNAS think tank to discuss the DoD’s industry innovation agenda, alongside Michèle Flournoy, Christine Fox and Gen. Charles Wald. Video below:

Categories: News

APKWS II: Laser-Guided Hydra Rockets in Production At Last

Sat, 10/18/2014 - 16:33
Hydras & Hellfires
(click to view full)

The versatile Hydra 70mm rocket family is primed for a new lease on life, thanks to widespread programs aimed at converting these ubiquitous rockets into cheap laser-guided precision weapons. Conversion benefits include cost, use on both helicopters and fighters, more precision weapons per platform, low collateral damage, and the activation of large weapon stockpiles that couldn’t be used under strict rules of engagement.

Firms all over the world have grasped this opportunity, which explains why strong competition has emerged from all points of the compass. America’s “Advanced Precision-Kill Weapon System (APKWS)” is one of those efforts, but the road from obvious premise to working weapon has been slow. After numerous delays and false starts since its inception in 1996, an “APKWS-II” program finally entered System Design and Development (SDD) in 2006. In 2010, it entered low-rate production, and it was fielded to the front lines in 2012. That date will still put APKWS on the cutting edge of battlefield technology, as a leading player in a larger trend toward guided air-to-ground rockets.

(click to view full)

Lockheed Martin, Raytheon, and BAE Systems were all battling for the APKWS program, which could pick up large US and international orders, and remain in production for a long time. BAE Systems’ team won in April 2006, but Lockheed Martin and Raytheon both proceeded with independent efforts to develop their own products. Meanwhile, the Army’s APKWS budget request was “zeroed” out in FY 2008.

Fortunately for BAE and General Dynamics, the US Navy kept them in the game. In November 2008, they formally picked up the APKWS-II System Design & Development (SDD) contract, and kept it going. SDD finished in November 2009, and evaluations wrapped up in January 2010. APKWS-II was approved through Milestone C in April 2010, and initial production orders followed in July 2010. A February 2011 JCTD contract will add APKWS to fixed-wing fighters: the USMC’s AV-8B Harriers, and the USAF’s A-10C Thunderbolt close air support planes. By January 2012, the 1st fixed-wing test firing had added the AT-6C turboprop light attack plane to this list, and showed clear potential for broader fielding. The US military fielded APKWS in March 2012, beginning with US Marine Corps UH-1 utility and AH-1 attack helicopters. The 1st Full Rate Production order was placed at the end of July 2012.

APKWS: Concept and Weapon APKWS
(click to view full)

The BAE and General Dynamics team offered an unusual approach to APKWS-II, in order to solve the problems inherent in launching several guided rockets at once. Instead of adding a guidance unit to the rocket’s nose, where it could be damaged or confused by the flames, corrosive soot, overpressure etc. created by nearby rocket firings, they opted for a mid-body guidance approach. BAE’s Distributed Aperture Semi-Active Laser Seeker (DASALS) uses fiber-optic connections to a set of optical sensors, distributed within the rocket’s pop-out fins.

Since the fins are folded and sealed during firing, their seekers are protected. The technical challenge after that, is making sure that the pop-out fins don’t flex or vibrate a lot in flight. The use of distributed sensors can compensate for some movement, but too much movement would create accuracy problems for the DASALS optical bench.

The entire guidance section screws in between the warhead section and the rocket motor section, and can be added in the field.

Since the seeker is a semi-active laser, rather than a beam-rider, APKWS can be directed by laser sources beyond its launcher, so long as they have the correct laser modulation code. This is a standard approach for laser guided missiles, but some competitors still use beam-riding guidance. Thales low-end LMM missile, for instance, will begin as a beam rider.

APKWS Fixed-Wing is actually a different rocket, because it has to survive and perform through the freezing temperatures of high-altitude flight, as well as the high turbulence produced by high speed aircraft. That means a different guidance control system for the rocket, and a redesigned deployment mechanism for the 7-rocket pod.

APKWS has been qualified for use aboard USMC UH-1Y utility and AH-1 Cobra/Viper attack helicopters, and from Bell’s militarized 407GT scout helicopter. The next targets are the US Navy’s MH-60S utility helicopter (2014) and MH-60R anti-submarine & strike helicopter (2015), using a digital LAU-61G/A 19-rocket pod.

Successful tests have been conducted from an AH-64D Apache attack helicopter, and Australia has tested APKWS from its EC665 Tiger ARH scout/attack helicopter, while using a different 70mm rocket: Forges de Zeebrugge’s FZ90. No modifications were required, and that combination could be in service by 2015.

On the fixed-wing front, successful APKWS-FW tests have been conducted from AT-6 turboprops, and from A-10C Thunderbolt II, AV-8B Harrier II, and F-16 jets.

Why APKWS? Combat Advantages Click for video

A 70mm rocket’s size and warhead are good enough for most military targets, offering both reduced collateral damage compared to larger missiles, and greater warhead flexibility. Precision rockets can carry infantry-killing flechettes, dispersed bomblets, small unitary warheads, and more. Adding thermobaric warheads creates a system that can kill personnel, destroy most armored personnel carriers and lighter vehicles; and even collapse buildings, if the Marines’ SMAW experiences in Fallujah are any indication. All without incurring the high-end price of full anti-armor missiles like the TOW RF, Hellfire, etc.

Using 70mm rockets also benefits the platforms carrying them to the battlefield. Laser-guided rockets would expand the range of aircraft, helicopters, and UAVs carrying precision weapons, as well as increasing the number of precision weapons each platform carries. The future of warfare may even see small rocket pods mounted on some ground vehicles, if recent experiments with Boeing’s Humvee-mounted Avenger system are any indication. That would conserve valuable missile rounds by eliminating easy targets like UAVs, provide a second type of guidance threat against incoming helicopters and aircraft, and create the option of using the system in ground combat against infantry positions or vehicles.

Each of those changes, individually, is a significant increase in combat power. All of those changes together would make US Army precision fires nearly ubiquitous on the battlefield, alongside weapons fired from UAVs, and guided ground-launched rockets, mortars, and artillery shells. When coupled with persistent surveillance concepts like Task Force ODIN, it nudges the Army and USAF toward a more equal footing of “federated airpower” in counterinsurgency fights. In full-scale battles like the 1991 Desert Storm, it can turn NATO’s long-standing “assault breaker” doctrine of tactical decapitation into routine procedure, as enemies showing leadership behaviors are quickly targeted from the air or ground, and eliminated.

Beyond the USA, laser guided 70mm rockets open up a large market for counterinsurgency weapons. Many countries operate older fixed wing planes as their primary strike force, but haven’t been able to afford the expensive conversions and weapons that precision attack requires. With guided rockets, that goal is suddenly within reach. Rocket pods are a universal weapon option, almost all countries have existing stocks of unguided rockets, and targeting can even be done by troops on the ground. This setup can work with very basic aircraft integration, so the technical and cost requirements aren’t difficult. What’s difficult, is the training and coordination required to make close air support effective. Which may not stop eager customers.

Contracts and Key Developments

APKWS is designed as a screw-in insert to existing 70mm rockets, so it’s bought as mid-body “guidance sections.” BAE Systems Information and Electronics in Nashua, NH is the official prime contractor, though they’re partnered with General Dynamics. US Naval Air Systems Command (NAVAIR) in Patuxent River, MD manages the contracts.


Orders: USA, Jordan; Testing on AH-64D; US Navy begins program for MH-60R/S; Australia wants APKWS for EC665 Tiger and MH-60RS. APKWS numbers

Oct 13/14: Australia. APKWS is about to get its 2nd export customer, as Australia finishes testing APKWS-II aboard its EC665 Tiger ARH scout/attack helicopters. August 2014 trials at Woomera were conducted by Airbus subsidiary Australian Aerospace’s Operational Support Group, and saw APKWS go 7-for-7 in tests while mounted on a new 70mm rocket: Forges de Zeebrugge’s FZ90.

BAE director of precision guidance solutions David Harrold touts the no-modifications use of APKWS on the FZ90 as a testament to the mid-body design’s versatility, but Australia has a 2nd reason to prefer APKWS. BAE’s system will be integrated on American MH-60R Seahawk naval helicopters, and Australia bought that type off the shelf as their future naval helicopter. Once the US Navy is done developing and testing its MH-60R upgrade, Australia can adopt it at very low cost. The tests pave the way for Australia to place an order, then field the laser-guided rockets on its Tiger and Seahawk helicopters beginning in 2015. Sources: BAE Systems, “Laser-Guided Rocket Successfully Demonstrates Precision Strike Capability for Australian Defence Forces”.

AC-235 concept
(click to view full)

May 7/14: Jordan. Jordan has formally signed a Letter of Offer and Acceptance via the US Navy for BAE’s APKWS-II laser-guided 70mm rocket, which will be deployed on the kingdom’s CN-235 light gunships. This marks the guided rocket’s 1st export sale.

APKWS rockets give the gunships an intermediate option between the 30mm gun, and heavier AGM-114 Hellfire laser-guided missiles. A 70mm rocket is perfectly adequate for most counter-insurgency situations, is less expensive than a Hellfire, and can be carried in a pod that holds 7 guided rockets on the hardpoint instead of 2 Hellfires. Sources: BAE, “Kingdom of Jordan to Purchase BAE Systems’ Precision Rockets to Strengthen Military”.

Jordan is 1st export sale

March 28/14: FRP-3. A $37.4 million firm-fixed-price contract buys 1,372 APKWS-II WGU-59/B Guidance Sections, the Navy shipping and storage container; and supporting technical and program documentation. That makes 4,758 kits ordered so far.

All funds are committed immediately, using FY14 USN & USMC ammunition budgets. Work will be performed in Nashua, NH (70%); and Austin, TX (30%), and is expected to be complete in September 2015. This contract was not competitively procured, pursuant to FAR 6.302-1 (N00019-14-C-0044).

FRP-3 order

Dec 18/13: MH-60R/S: H-60 Program Manager Capt. James Glass discusses programs to arm the MH-60S naval utility and MH-60R strike and ASW helicopters with APKWS rockets.

The MH-60S is slated to integrate APKWS by March 2014, using a new 19-rocket LAU-61G/A launcher. and is about to begin test-firing the same M197 3-barrel 20mm gatling gun used on Cobra attack helicopters.

The MH-60R is slated to integrate APKWS by March 2015, by which time the LAU-61G/A launcher should have full mixed-rocket capabilities. Sources,, “Navy Arms MH-60S Helicopter with Gatling Gun” | US Navy, “NSWC IHEODTD Supports Digital Rocket Launcher Early Operational Capability”.

Oct 22/13: Testing. BAE announces that the US Army has finished 8 successful tests from an AH-64D Apache. Shots were fired at up to 150 knots, from as far as 5 kilometers from the target, at altitudes between 300 and 1,500 feets. This earns it an an Airworthiness Qualification, which allows existing AH-64D customers to order APKWS.

BAE director of precision guidance solutions David Harrold had an interesting addendu,m, when he noted that “…the final shot from the Apache hit within inches of the laser spot – despite the rocket and warhead being visibly scorched from two adjacent firings”. No doubt that was part of BAE’s motivation for using mid-body guidance sensors, which are inherently protected from such effects. Sources: BAE, “Laser-Guided Rocket Successfully Qualified to Support Apache Crews”.

FY 2011 – 2013

Fixed-wing, Apache tests. IOC; combat deployment. FRP-2. APKWS loading, AT-6C
(click to view full)

Sept 27/13: Testing. CENTCOM releases a Military Utility Assessment (MUA) confirming that the APKWS FW fixed-wing variant has met its performance targets in test shots from the USAF’s A-10C Thunderbolt IIs and F-16s, and the USMC’s AV-8B Harrier II V/STOL fighters. The rocket has also been tested from AT-6 turboprops, but that work took place under the Light Air Support program.

APKWS FW is actually a different rocket, because it has to survive and perform through the freezing temperatures of high-altitude flight, as well as the high turbulence of high speed aircraft. That means a different guidance control system for the rocket, and a redesigned deployment mechanism for the 7-rocket pod. Sources: US NAVAIR, “Rocket safe for fixed wing aircraft, ends demonstration phase”.

April 2/13: Testing. Eglin AFB announces successful tests of the APKWS laser-guided 70mm rocket from an A-10C, marking the 2nd test from a fixed-wing aircraft (a Beechcraft AT-6B was the 1st). For the final A-10C test sortie, 2 APKWS rockets were fired at a surface target at altitudes of 10,000 and 15,000 feet. The first rocket hit within inches, and the 15,000 foot shot hit within 2 meters despite a 70-knot headwind.

The USAF used a US Navy rocket launcher, because the guidance section adds 18″ to the Hydra rocket. If the USAF continues to move forward with APKWS on the A-10C and F-16, they’ll buy the Navy’s modified launchers to replace their 7-rocket LAU-131s. The US Navy is preparing to qualify APKWS on the MQ-8C VTUAV, USMC AV-8B Harrier II V/STOL jets, and F/A-18 family fighters. Pentagon DVIDS.

March 4/13: Bell 407 qualified. BAE Systems announces that APKWS is now qualified on Bell Helicopters 407GT, after a 7-shot test at Yuma, AZ. The Bell 407 joins that firm’s AH-1Z Viper and UH-1Y Venom helicopters, and Beechcraft’s AT-6B light attack turboprop, as qualified APKWS platforms. Northrop Grumman’s MQ-8B Fire Scout helicopter UAV is expected to follow shortly.

BAE Precision Guidance Solutions director David Harrold says that the qualification “is significant because [the 407GT] is Bell Helicopter’s first commercially qualified, armed helicopter…” It’s also significant because the US Navy is about to introduce its MQ-8C UAV based on the 407, and Iraq has already fielded armed Bell 407s. The MQ-8C combines a Bell 407 airframe with Fire Scout electronics.

Nov 27/12: FRP-2. A $41.4 million firm-fixed-price contract modification, exercising an option for 1,476 APKWS-II WGU-59/B Guidance Sections, shipping and storage containers, and support technical data. That makes 3,386 production kits ordered so far.

Work will be performed in Nashua, NH (70%), and Austin, TX (30%), and is expected to be complete in September 2014. All contract funds are committed (N00019-12-C-0006).

FRP-2 order

July 31/12: FRP begins with FY 2012 order. A $28.1 million firm-fixed-price contract for 985 APKWS-II WGU-59/B guidance sections, Navy shipping and storage containers; and support technical data. That makes 1,910 production APKWS kits ordered so far.

Work will be performed in Nashua, NH (70%), and Austin, TX (30%), and is expected to be complete in December 2013. This contract was not competitively procured pursuant to FAR 6.302-1 by US Naval Air Systems Command in Patuxent River, MD (N00019-12-C-0006). A subsequent BAE release confirms that this is the beginning of Full Rate Production, and confirms that APKWS is available for foreign military sales.”

Full-rate production &
Export ready

April 17/12: APKWS to Afghanistan. BAE announces that APKWS was cleared for fielding by Marine Corps HQ, and shipped to Afghanistan in March 2012. The cite over 100 firings since 2007, with a 94% success rate, and an average distance from the center of laser spot to the impact point of less than one meter.

The rockets will initially be deployed on USMC AH-1W Super Cobra attack helicopters, and UH-1Y Venom utility helicopters.

The Program’s Manager Navy Captain Brian Corey said that Initial Operating Capability (IOC) had been declared on March 27. The Navy is working to integrate the weapon on MQ-8 Fire Scouts by 2013. US NAVAIR | BAE Systems.

IOC & combat deployment

January 2012: 1st Fixed-Wing Shots. APKWS is fired from a HawkerBeechcraft AT-6C turboprop light attack plane at Eglin AFB, its 1st fixed-wing shots. BAE says they’re still working to upgrade APKWS so it can handle high-speed, high-g firings from fighter jets, per the Feb 10/11 JCTD contract.

The AT-6C shots were step 1, and involved 2 rockets: an unguided round as a demonstration of safety and basic operation, followed by a guided shot from 3 miles that “successfully hit within inches of the center.” As an added demonstration, BAE Systems personnel added the APKWS mid-bodies and assembled the rockets on site. Time from beginning of assembly to flight and the successful shot was 3 hours.

The shots will help both BAE and HawkerBeechcraft, whose setback in the 20-plane American LAS competition was mitigated by an initial sale of 6 “weapons capable” T-6C+ to Mexico. Mexico has used existing Pilatus trainers against domestic insurgencies before. The T-6C family’s proven ability to fire laser-guided rockets makes the new planes more valuable to Mexico, and to other potential customers. BAE | HawkerBeechcraft | Aviation Week.

1st fixed-wing shot

Sept 9-13/11: New warhead. USMC UH-1Y helicopters successfully fire 6 APKWS-II rockets at targets 1.5km – 5 km away (3 miles maximum) on the range at China Lake, CA. The tests are part of APKWS’ low-rate initial production phase, and mark the 1st time that the new, safer Mk152 warhead has been fired from any air vehicle.

New warhead

APWKS-II fielding is still set for 2012. BAE Systems.

Feb 10/11: Fighter JCTD. BAE Systems in Nashua, NH receives a $19.7 million cost-plus-fixed-fee contract for development of the fixed wing APKWS-II for deployment on USMC AV-8B Harriers and USAF/ANG A-10C aircraft, as a joint capability technology demonstration.

American fast jets must currently rely on aging AGM-65 Maverick missiles for laser-guided strikes. An update and production relaunch is underway, but a full-size Maverick missile can be overkill. Using laser-guided 70mm rockets instead would sharply increase the number of laser precision strike weapons on board, using cheaper weapons. It’s not a perfect substitute, but it would be an excellent complement.

Work will be performed in Nashua, NH, and is expected to be complete in May 2013. $7.5 million will expire at the end of the current fiscal year, on Sept 30/11. This contract was not competitively procured, pursuant to FAR 6.302-1, by US Naval Air Systems Command in Patuxent River, MD (N00019-11-C-0033).

APKWS for fighters, too

Jan 3/11: LRIP-2 order. BAE Systems Information and Electronics in Nashua, NH receives a $17.3 million firm-fixed-price contract for the 2nd Low Rate Initial Production Lot (LRIP-II) of 600 APKWS II guidance sections for the US Navy, including shipping and storage containers.

Work will be performed in Nashua, N.H., and is expected to be completed in November 2012. US Naval Air Systems Command, Patuxent River, MD manages the contract, which is presumably issued under N00019-10-C-0019.

FY 2008 – 2010

SDD. Milestone C. APKWS concept
(click to view full)

July 30/10: LRIP-1 order. BAE Systems Information and Electronics in Nashua, NH receives a $15.3 million firm-fixed-price contract for the first Low Rate Initial Production Lot (LRIP-I) of 325 APKWS II guidance sections for the US Navy, including shipping and storage containers. The contract will also fund integration with the Marines’ new UH-1Y utility helicopter, technical and training manual updates, and support equipment and support test equipment.

Work will be performed in Nashua, NH, and is expected to be complete in October 2012. This contract was not competitively procured by US NAVAIR, pursuant to FAR 6.302-1 (N00019-10-C-0019). BAE Systems.

April 9/10: Milestone C, LRIP OKed. The US Navy has approved low-rate production of the APKWS after the weapons system passed its Milestone C. The USMC plans to initially deploy APKWS on its AH-1W Super Cobra helicopters. The Navy decision follows successful testing of the weapons system from the AH-1W helicopter in January (see Jan 11-18/10 entry). BAE Systems release

Milestone C

Jan 11-18/10 The USMC completes APKWS’ operational assessment, scoring 8 direct hits from AH-1W Super Cobra helicopters in live-warhead trials over 2 weeks. The final step in the APKWS development program is system qualification for the environments in which it might be employed, transported, and stored. That testing is expected to be finalized in time to allow the Navy to complete a production decision within the next 60 days, leading to low-rate initial production if the decision is positive. BAE Systems release.

Jan 4/10: Fixed-Wing JCTD. US FedBizOpps announces, in solicitation #N00019-10-C-0028:

“Naval Air Systems Command (NAVAIR) intends to award a sole source contract to BAE Systems, Nashua, NH for the FY10-12 development of the Fixed Wing (FW) Advanced Precision Kill Weapon System (APKWS) II for AV-8B and A-10 platforms to support a Joint Capability Technology Demonstration (JCTD). It is anticipated that the resultant contract shall be Cost-Plus Incentive Fee type for the development of FW APKWS II weapons that show operational utility upon integration with AV-8B and A-10 platforms. Fifty (50) FW APKWS II plus FW APKWS II tests units (quantities TBD) including Navy Shipping and Storage Containers (NSSC) are to be delivered for technical demonstrations and operational assessments.”

The AV-8B is a USMC aircraft, while A-10s are operated by US Air National Guard and some USAF units.

Jan 4/10: In the combined synopsis/solicitation #N00421-10-T-0042, US FedBizOpps announces an RFQ on a firm fixed-price, sole-source basis with Summit Instruments, Inc., for APKWS-related electronics. Summit makes accelerometers and inertial measurement systems, which can be used to help precision weapons establish their position, just as a simpler set of accelerometer + software in an iPod Nano can tell you how far you’ve jogged today.

CLIN 0001 – Quantity 5 each, Repackage 65210E to fit in 2.75″ diameter rocket body and add 2GB memory… Award is expected 04 Jan 2010.

Nov 23-27/09: SDD done. During the final phase of SDD testing, 4 APKWS rockets fired from a U.S. Marine Corps AH-1 Cobra attack helicopter hit laser-designated moving and stationary targets under a variety of operational scenarios while the rockets were fired at varying altitudes and airspeeds. Each shot strikes well within the required distance from the laser spot.

Navy and BAE Systems representatives confirm that APKWS has undertaken 28 guided flights over the last 7 years. The weapons are known to have hit their targets 22 times since September 2002, and most of those firings (12) have been from USMC AH-1 Cobra attack helicopters. In the latest test series, there have been no APKWS issues.

The rockets are approaching Milestone C decision that approves a system’s performance, durability, safety, and successful integration with specified systems, and allows Low Rate Initial Production to begin. The US Navy will begin Operational Assessment of APKWS in January 2010, with 8 live fire events. In the next 12 to 14 months, the Navy expects to shoot approximately 90 weapons in combined developmental and operational testing, on the road to the program goal of Initial Operational Capability in 2011. BAE Systems.

Nov 13/09: BAE Systems announces that APKWS has entered its final phase of testing, intended to confirm both production readiness and reliable accuracy. According to BAE, APKWS has hit its targets 18 times since September 2002 in ground and air-launched shots, including a recent firing from a USMC AH-1 attack helicopter against a stationary target. That test firing initiated a sequence of more than 20 firings that will comprise the program’s final test phase, to be completed by the end of 2009.

BAE Systems and the Navy are preparing for Navy demonstration test flights and full government qualification testing, with a goal of production in 2010.

APKWS from Cobra
(click to view larger)

Nov 4/08: BAE Systems announces that the APKWS contract has been transferred from the U.S. Army to the Department of the Navy.

Development funding will also be used for testing and qualification of APKWS for use on the Marine Corps’ AH-1W Super Cobra helicopter, and BAE Systems’ Nashua facility plans to begin producing the rockets at the end of 2009.

July 15/08: BAE Systems announces that the Department of the Navy will assume the $45.7 million APKWS development contract with BAE Systems to complete demonstrations of the system. The Navy is expected to assume that contract by end of August 2008, and the contractor team plans to begin APKWS production in 2009.

April 9/08: Saved by the Navy. Congress approves the APKWS-II Reprogramming Request. In combination with the President’s Budget Request for FY09 (submitted to Congress the first week of February), the Reprogramming approval makes APKWS-II’s development phase a fully-funded program. This development represents a major breakthrough for the BAE/GD offering, which now looks as if it will survive long enough to reach the competitive market.

Whether their APKWS-II can continue its success, and win volume orders against a growing set of rival systems from Lockheed Martin, ATK, Raytheon, et. al., remains to be seen at this point. As noted below, the US Navy is also funding a LOGIR program with Korean cooperation. It’s also a guided 70mm rocket, but it uses Imaging Infrared instead of laser seekers. That makes it especially effective against swarm attacks by enemies like small boats, as there’s no need for ongoing guidance.

Saved by the Navy

FY 2005 – 2007

BAE win. Emerging competitors. APKWS on target
(click to view full)

Sept 19/07: Testing. BAE Systems shoots 2 guided APKWS rockets from a U.S. Marine Corps Cobra helicopter at NAS China Lake, marking the weapon’s first flights from an aircraft. Following the launches, both APKWS rockets were guided by a laser designator to a ground target. The first rocket was guided to the target by a ground-based laser designator. The pilot guided the second rocket to the target using laser designation equipment onboard the helicopter. Both rockets struck the target board well within accuracy requirements established by the Army and Marine Corps.

The flights, held in partnership with the U.S. Navy program office, were designed to confirm the APKWS rocket’s compatibility with the Cobra’s carriage and launch systems, and to demonstrate that APKWS can be launched from the platform without requiring aircraft integration or modifications. The tests also proved again the weapon’s ability to acquire, track, and hit a laser-designated target. BAE Systems North America release.

BAE informs DID that the US Navy and USMC continue to pursue funding of APKWS-II within the FY 2008 appropriations process, with the goal of completing SDD and entering Milestone C in the second quarter of CY 2009. Meanwhile, development continues using FY 2007 funds.

April 11/07: BAE Systems’ APKWS II successfully completes environmental tests. They verified protection from sand, dust, vibration, ice, and other environmental hazards likely to be found in combat situations. Locating the weapon’s Distributed Aperture Semi-Active Laser Seeker (DASALS) within the rocket’s mid-body, with wings and optics sealed within the guidance section, certainly helps. In addition, a fully assembled 35-pound rocket dropped directly on its nose from a height of 3 feet sustained no damage to the guidance section. BAE Systems release.

March 19/07: Zeroed? BAE Systems informs DID that APKWS II funding has been zeroed out in the FY 2008 budget request, and they are putting the program on hold. Congressional reinstatement is always possible – but if it fails BAE may face an uphill battle getting its product to market, given the advance of competitors like Lockheed Martin’s DAGR and the US-Korean LOGIR.

DAGR launch test
(click to view full)

March 7/07: Competitor – DAGR. Lockheed Martin may have lost, but it didn’t give up. While “Hellfire Jr.” is an apt description of the class as a whole, it’s especially apt in this case. The DAGR (70mm Direct Attack Guided Rocket, not to be confused with DAGR hand-held GPS locators) completed development with private company funding, leveraging existing Hellfire and Joint Common Missile technology to create semi-active guided rockets that offer a wider aiming cone and full Hellfire functionality. Indeed, they can be launched from any platform that currently supports the Hellfire missile, removing any requirements for additional training or infrastructure.

The DAGR rocket was formally unveiled as complete and for sale on Sept 11/07, at Britain’s DESi defense exhibition, and remains a strong competitor in the USA and beyond. See “Guided Hydra Rockets: Program Halts & New Entries” for more information and updates re: competitive programs from Lockheed Martin, Korea, Raytheon, ATK, et. al.

March 2/07: USN Competitor – LOGIR. Korea and the United States have agreed to cooperate in developing guided air-launched rockets, signing a memorandum of understanding (MOU) for “LOGIR” (Low-Cost Guided Imaging Rocket) development. The budget for this project is reportedly more than $60 million. See “Guided Hydra Rockets: Program Halts & New Entries” for more information and updates.

(click to view larger)

April 27/06: The U.S. Army Aviation and Missile Life Cycle Management Command (AMCOM) awards a 3-year, $45.7 million contract to BAE Systems in Nashua, NH for the system development and demonstration of the Advanced Precision Kill Weapon System (APKWS) II. The contract includes priced options for qualification of the system and 2 years of Low Rate Initial Production that could begin as early as 2007. The total program, if all options are exercised, will be $96.1 million.

Interestingly, BAE Systems uses a mid-body guidance approach. The guidance component is its Distributed Aperture Semi-Active Laser Seeker (DASALS), which is also used in the Army’s Precision Guided Mortar Munitions Program. BAE Systems is partnered with General Dynamics (who makes the Hydra rockets) and Northrop Grumman, and is reported to be on track to provide the first production baseline units for evaluation prior to the Critical Design Review in July 2006. See also BAE North America release.

DID’s focus article for the Hydra-70 rocket family goes into more detail re: the past history of the APKWS effort, including its cancellation and replacement by the APKWS II competition.

BAE wins SDD

Sept 29/05: BAE Systems announces [BAE North America release | different BAE Systems release] 2 successful flight tests at the U.S. Army’s Yuma Proving Ground in Arizona. Their 70mm rockets scored direct hits on laser-designated stationary and moving targets.

BAE also announced that it will bid on APKWS II as a prime contractor, along with Northrop Grumman Corp. and General Dynamics. They join other consortia already in the APKWS II competition, led by Lockheed Martin and Raytheon.

Additional Readings

Categories: News

AW159 Wildcat: The Future Lynx Helicopter Program

Sat, 10/18/2014 - 15:00
Future Lynx naval
(click to view full)

In 2006, Finmeccanica subsidiary AgustaWestland received a GBP 1 billion (about $1.9 billion at 02/07 rates) contract from the UK Ministry of Defence (MoD) for 70 Future Lynx helicopters, and began a new chapter in a long-running success story. The Lynx is an extremely fast helicopter that entered service in the 1970s, and quickly carved out a niche for itself in the global land and naval markets. The base design has evolved into a number of upgrades and versions, which have been been widely exported around the world.

In Britain, Lynx helicopters are used in a number of British Army (AH7 & AH9) and Fleet Air Arm (Mk 8) roles: reconnaissance, attack, casualty evacuation & troop transport, ferrying supplies, anti-submarine operations, and even command post functions. The Future Lynx program reflects that, and British government and industry are both hoping that its versatility will help it keep or improve the Lynx family’s global market share. This is DID’s FOCUS Article for the AW159 Lynx Wildcat Program, describing its technical and industrial features, schedules, related contracts, and exports.

The AW159 Wildcats Mk8: everyone retires…
(click to view full)

Britain originally referred to the 2 variants as Future Lynx Battlefield Reconnaissance Helicopters (BRH, now AW159 Wildcat Mk.1) for the British Army, and Future Lynx Surface Combatant Maritime Rotorcraft (SCMR, now AW159 Wildcat HMA Mk.2) for the Navy.

Both AW159 versions will share a common fully-marinized airframe, with provisions for a range of mission and role-based equipment but an estimated 90% commonality. The new helicopter features a range of improvements, including human factors design improvements to the airframe, a new British Experimental Rotor Programme (BERP) main rotor for improved performance, a new 4-blade tail rotor to give improved yaw control at high weights, plus crashworthiness improvements, armoring improvements, and built-in infrared signature suppression to maximize survivability.

Communications equipment will be compatible with the new BOWMAN systems used by British ground forces, but can be changed for export orders.

The cockpit includes a fully integrated display system of 4 primary 10″x8″ inch displays. Sensors include a nose mounted Wescam MX-15Di surveillance turret with IR/TV imaging and laser ranging/targeting, and the naval variant will also carry the 360-degree Selex Galileo 7400E active array radar. Britain decided to confine dipping sonars to its larger AW101 Merlin naval helicopters, but Wildcat export models have the option of using the long-range detection capabilities of Thales’ Compact FLASH.

Defensive protection is provided by a comprehensive integrated defensive aids suite from Selex Galileo that includes missile warning, radar warning, and countermeasures dispensing systems.


AW159 helicopters will be able to carry rockets and gun pods, and the naval version adds BAE’s Sting Ray light torpedoes. Beyond that, integration of Thales’ beam-riding LMM missile (FASGW-L program) is underway, and Wildcat is the initial platform for Sea Skua’s small anti-ship missile successor (FASGW-H/ ANL).

Given Britain’s cramped defense budgets, expansion beyond that weapon set depend on the stated requirements and desires of export customers. If local reports are correct, South Korea is adding the Spike-NLOS missile and its 25km range. That missile would out-range short-range air defense systems, and give the helicopters a very long reach against enemy hovercraft, speedboats, or coastal artillery.

The AW159’s projected Maximum All-Up Mass (MAUM) is 5,790 kg, but can grow to 6,250 kg if necessary during its service life. New nose and tail structures, and an up-rated undercarriage ensure that the helicopter can handle these weights. A pair of LHTEC CTS800-4N engines rated at 1015 kW (1,361 shp) add extra power, and their 36% power increase over previous GEM engines will help maintain the Lynx’s reputation as a speedster. Despite the added mass, therefore, these changes translate into greatly improved hot and high performance, load-carrying ability, and single engine performance overall. All without significantly increasing fuel consumption.

Other enhancements to Future Lynx include a new 12,000-hour fatigue life airframe. The original goal was a 30% parts reduction, but a successful design-to-cost process managed to reduce the number of airframe parts by 80%, using improved design techniques and machined monolithic components.

Future Lynx: The Program Lynx BRH & Longbows
(click to view full)

The Future Lynx program aims to replace both British Army’s 100 or so AH7s & AH9s, and Fleet Air Arm’s set of about 60 Lynx Mk 8 helicopters.

The original goal was 40 Battlefield Reconnaissance Helicopters (BRH) for the British Army, and 30 Surface Combatant Maritime Rotorcraft (SCMR) for the Royal Navy, with an option for another 10 helicopters that could be split in any way desired. At present, contracts have been issued for 34 AW159 BRH/ Mk.1 Army helicopters, and 28 naval AW159 SCMR/ HMA Mk.2s. Barring future expansion, that will constitute the entire program.

By 2013, there was some question regarding whether the AW159 Mk.1 helicopters would be armed. The Royal Navy’s AW159 HMA Mk.2s will be armed, carrying Sting Ray torpedos, FASGW-L LMM direct fire missiles, and FASGW-H anti-ship missiles. What they won’t carry is sonar capabilities, though a full ASW version with a SONICS/FLASH Compact dipping sonar system is being delivered for export.

Program & Industrial Structure

In April 2005, the UK Government announced the selection of Future Lynx for the British Army’s and Royal Navy’s requirements, with detailed technical and commercial discussions subsequently taking place that led to a contract award in June 2006. Both EADS’ Eurocopter Unit and Boeing had wanted to compete for the helicopter contract, but the MoD declined to put the contract out for competition.

Instead, Future Lynx was the launch program for a new Strategic Partnering Arrangement between the MoD and AgustaWestland. The UK MoD hailed it as “a major milestone in the implementation of the new Defence Industrial Strategy (DIS),” helping them to meet the objective of sustaining critical helicopter design and engineering skills in the UK by supporting over 800 high technology jobs across the UK.

The public-private partnering arrangements are enshrined within a formal Business Transformation Incentivisation Agreement, and a formal Strategic Partnering Arrangement. The MoD adds that partnering is already delivering significant improvements in spares delivery and technical support for Sea King and EH101 Merlin helicopters operated by the MoD.

An integral requirement of the SPA has been the back to back signature by AgustaWestland of the Future Lynx Contract and Partnering Charters with the 6 major suppliers to the Future Lynx Program. Major industrial partners include:

  • GKN Aerospace (helicopter airframes)
  • LHTEC partnership between Rolls-Royce and Honeywell (engines)
  • Finmeccanica’s Selex Galileo (defensive suite, SCMR Seaspray 7400E radar)
  • GE Aviation
  • General Dynamics UK
  • Thales UK (avionics, COMPACT FLASH dipping sonar and SONICS processing system for SCMR exports)

Other suppliers of note include:

  • L-3 Wescam (MX-15Di surveillance & targeting turret)

So far, the timeline looks like this:

Future Lynx: Contracts & Key Events 2013 – 2014

South Korea buys; From 1st HMA Mark 2 flight to standup of 825 NAS training squadron. Bringing her in
(click to view full)

Oct 10/14: Re-commissioning. 825 Naval Air “Channel Dash” Squadron is formally re-commissioned into the Royal Navy with its AW159s, and receives the “Falkland Islands 1982″ battle honors that were denied it when the squadron was disbanded after that conflict.

The squadron gets its name from Operation Fuller, which attempted to halt the breakout of 66 German ships from Best, France through the English Channel, and back to their German home ports. A sortie of 6 825 Sqn. Swordfish biplanes from RAF Manston near Kent attacked with torpedoes in broad daylight, with only 10 Spitfires for air cover against a vastly larger Luftwaffe force, plus the guns of the German ships. All of the planes were shot down, with only 5 of 18 survivors, and a posthumous Victoria Cross was awarded to Lt. Cdr. Esmonde. All 66 German ships made it. Operation Fuller failed dismally – but 825 Squadron did not. Sources: Royal Navy Fleet Air Arm Museum, “The Channel Dash – Operation Fuller” | Royal Navy, “New Navy Wildcat Helicopter Squadron commissions at RNAS Yeovilton”.

July 30/14: De-commissioning. 700W Naval Air Squadron at Royal Naval Air Station (RNAS) Yeovilton is decommissioned, after 4 years of work bringing the AW159 into the fleet and a flyby ceremony with all 7-helicopters. The Wildcat HMA2s will stand up again on Aug 1/14 as 825 NAS, which will train both aircrew and maintenance engineers, and get the first deployable Wildcat flights ready to go. Sources: UK Royal Navy, “Wildcat pride as they take to the sky”.

700W NAS disbands, 825 NAS begins

July 17/14: Weapons. AgustaWestland signs a EUR 113 million (about GBP 89.3M / $153.1M) contract with the UK Ministry of Defence (MoD) to integrate, test, and install ANL anti-ship missile and LMM light strike missile system compatibility onto 28 Royal Navy AW159 Wildcat HMA2 helicopters.

Note that the UK MoD has also signed a EUR 60.2 million contract with LMM missile maker Thales regarding broader integration of their missile onto the Wildcat fleet. Sources: Finmeccanica, “Finmeccanica – AgustaWestland signed a contract worth EUR 113 million with the UK Ministry of Defence”.

June 17/14: Exercises. The AW159’s 700W Naval Air Squadron dropped in on the former aircraft carrier HMS Illustrious during the big Deep Blue Anti-Submarine exercise off of the Cornish coast. It didn’t perform any anti-submarine work, however, just dropped off some supplies while the ship’s 9 Merlin Mk.2 naval helicopters hunted a Dutch Walrus Class SSK and a British SSN.

The Wildcat will continue training and trials with 700W until the end of July 2014, before disbanding. It will be replaced by the operational 825 Naval Air Sqn, which will be the parent unit for training all air and ground crew working on the AW159 HMA Mk.2. Sources: Royal Navy, “New Wildcat debuts aboard Illustrious”.

June 16/14: Weapons. The Ministry of Defence awards Thales a GBP 48 million (EUR 60.2 M / $81.5 M) contract, covering the Light Modular Missile’s final development, qualification and integration on AW159 Wildcat helicopters, plus deployable test equipment.

The chosen configuration involves a 5-missile launcher on each hardpoint, rather than the 7-missile sets shown in previous mock-ups. Read “Direct Sting: Thales’ Small LMM / FASGW-L Missiles” for full coverage.

Jan 6/14: Weapons. South Korea will be adding RAFAEL’s Spike-NLOS missile to its AW159s, giving them a 25+ km reach:

“…the new lot will be mounted on Wildcat maritime choppers to be purchased over the next two years, an official with the Defense Acquisition Program Administration said Friday. “We’ve recently struck a deal with the Israeli manufacturer of the missile…. The missiles cost about W300 million (US$1=W1,056) each, approximately 100 times the price of a shell for the K-9 self-propelled howitzer.”

Well, yes, but K9 armored vehicles can’t fly, K9 shells aren’t guided, and they can’t hit moving targets. Other than that, it’s a great comparison. South Korea already operates land-based versions of the Spike-NLOS light strike missile, whose primary mission from land-based platforms is to kill North Korean artillery. A naval helicopter that became the first aircraft to mount it would add speedboats and hovercraft to the target list, and gain a much longer reach than the 15 km Hellfire missiles aboard AH-64E attack helicopters and US Navy MH-60Rs. In fact, it would be long enough to out-range short-range air defense systems. The Hellfire-range Spike-LR is more commonly mounted on helicopters, but subsequent reports indicate that this isn’t a reporting mistake – they’ve really picked the NLOS variant. Sources: Chosun Ilbo, “Korean Choppers to Be Armed with Israeli Missiles” | Defense Update, “Seoul to Equip its New Maritime Helicopters with Israeli SPIKE Missiles”.

Feb 6/13: Sonar. AgustaWestland picks the compact version of Thales FLASH dipping sonar as their standard offering for naval Lynx exports. The FLASH Compact sonar features an optimized, lightweight architecture, as well as a fully electric reeling machine so that smaller helicopters can deploy it. Thales’ SONICS system will act as an on-board real-time data processing system, with a VHF receiver to pick up sonobuoy data.

This equipment has been offered with their Super Lynx 300s before, so the announcement seems to be directly targeted at the AW159. Note that Britain’s AW159 Wildcat HMA Mark 2 helicopters don’t have a dipping sonar on board, but South Korea has said that their AW159s will. This appears to nail down the type.

They’ll be in good company. FLASH platforms include America and Australia’s MH-60R Seahawks; Britain’s AW101 Merlins; NH90 helicopters ordered by France, Norway & Sweden; and the UAE’s EC525 Cougars. All of these other machines are medium helicopters or larger. Thales.

Jan 28/13: HMA Mk.2. The Royal Navy refers to its “Wildcat HMA Mark 2″, as they discuss their 1st delivered helicopter’s inaugural flight at Yeovil in Somerset. HMA stands for Helicopter Maritime Attack, and is part of the operational designation. SCMR is the Future Lynx program’s reference, which is a separate thing.

British Army helicopters will be Wildcat Mark 1s, and the first 2 were officially handed over on July 11/12. MoD | Royal Navy | Defense Update.

1st Naval AW159 delivered

Jan 16/13: ROK on. South Korea’s DAPA spokesperson Baek Yun-hyung announces that the naval AW159 is South Korea’s preferred choice for its MH-X competition, with a planned initial buy of 8 helicopters. Finkeccanica’s Jan 17/12 release places the overall contract value at EUR 560 million (about $744 million), with AgustaWestland’s share at EUR 270 million. It’s the new helicopter type’s 1st export order, with deliveries planned from 2015-2016. DAPA’s Baek:

“The Wildcat was deemed superior in three of four fields: cost, operational suitability, and contractual arrangements…. The overall consensus is that the Wildcat is the better option…. In joint operations the US model is superior but both models meet our performance requirements.”

The ROKN’s AW159s will have the full complement of dipping sonar, radar, surveillance & targeting turret, rescue hoist, provision for anti-ship missiles and torpedoes, door gun, etc. Media descriptions involve using the helicopters with the ROKN’s 2,200t Ulsan Class light frigates, which are designed to serve as high-end coastal patrol vessels with a mix of anti-ship and anti-submarine capabilities, plus low-end air defense. A smaller helicopter will serve them better (“operational suitability”), but the class doesn’t have much service time left. The ROKN’s new 2,300t FFX Incheon Class light frigates will also need helicopters, and the ROK’s 24 Super Lynx 300s and 8 AW159s should give them good options. AgustaWestland | Finmeccanica | Hankoryeh.

South Korea orders AW159

Jan 13/13: NAO Report. Britain’s NAO releases its 2012 Major Projects Report. The overall Future Lynx program remains GBP 140 million under its original GBP 1.803 billion approval estimate, in part because it has reduced to number of helicopters from 80 (at GBP 23.1 million each) to the current order set of 62 (at GBP 26.8 million each).

The program is 7 months behind schedule, which will push the Army’s AW159 BRH in-service date from January to July 2014, but won’t affect the naval SCMR’s January 215 schedule. Meanwhile, bureaucracy is getting in the way. “Significant unanticipated activity has been undertaken to satisfy the emerging Regulatory Instructions issued by the recently formed Military Aviation Authority (MAA).”


1st delivery. Support contract. Denmark loss. AW159 BRH
(click to view full)

Nov 21/12: Denmark. Denmark’s Forsvarsministeriet announces that it has picked the MH-60R for a 9-helicopter buy, to replace their existing fleet of 7 AgustaWestland Lynx 90B machines. Danish MH-60Rs will be missing their sonobuoy launchers and ALFS FLASH dipping sonar, which will increase their available internal cabin space for transport missions.

The DKR 4 billion (about $686 million) choice must next be approved by the Finance Ministry, and then passed in a budget by Parliament. That’s expected to happen, and it would be followed by deliveries from 2016 – 2018. Danish Forsvarsministeriet [in Danish] | Sikorsky | Flight International | Jane’s .

Denmark loss to MH-60R Lite

July 11/12: Support. At Farnborough, the MoD takes the opportunity to announce that their GBP 250 million Wildcat in-service support and training contract is up and running with AgustaWestland, who will outfit a specialist training centre at RNAS Yeovilton. This deal builds on the earlier GBP 76 million March 8/11 contract, and will include flight simulators and a wide range of other equipment to train pilots, ground crew and engineers.

The initial period of the availability-based Wildcat Integrated Support and Training (WIST) contract will run to March 2017, but the framework as a whole stretches to the Wildcat’s planned out of service date in 2044. It builds on the contracting-for-availability approach pioneered with the firm’s Sea King (SKIOS), Apache, and AW101 Merlin helicopter fleets, where money is paid for levels of fleet availability rather than parts and hours worked. Regular price and value for money reviews are designed to ensure performance targets are being met, and help to price successive WIST phases.

WIST includes aircrew, maintainer and ground crew training as well, and it actually started in early 2012 so the April delivery could go smoothly. AgustaWestland and its suppliers are now delivering a complete spares provisioning service, enhanced technical support services including aircraft safety management and full systems integration rig support, and simulator and ground based training for both aircrew and maintainers. The contract will sustain over 300 industry jobs, mainly in the South West of England at Royal Naval Air Station Yeovilton. Its Wildcat Training Centre will include 2 Full Mission Simulators, a Flight Training Device, and a Cockpit Procedures Trainer. AgustaWestland will be responsible for delivering over 60 different training courses for ab-initio Army aircrew, ground crew and maintainers starting in July 2013, as well as for Royal Navy ab-initio aircrew and maintainers starting in January 2014. Once the helicopters are in service, operational currency and continuation training will also be supported at RNAS Yeovilton. UK MoD | AgustaWestland.

1st SCMR delivered, WIST through-life support contract

July 11/12: Official delivery. The first 2 of 62 AW159 Wildcat helicopters are officially unveiled and delivered by AgustaWestland at the Farnborough International Airshow. Both are Army BRH variants, which will come into service in 2014. Royal Navy AW159 SCMR Wildcats are due to be delivered for training later in 2012.

Technically, AgustaWestland says the 1st AW159 was accepted in April 2012, ensuring on-schedule and on-budget delivery. To date, a total of 5 production Wildcat helicopters have been finished. UK MoD | AgustaWestland.

BRH Delivery

Feb 17/12: Testing. The UK MoD announces that an AW159 SCMR prototype has completed 2 sets of 10-day sea trials aboard the Type 23 frigate HMS Iron Duke. The helicopter landed on the ship’s deck nearly 400 times by day and night, in “various weather conditions” off the coasts of southern England and northern Scotland, and in the Irish Sea. It sounds miserable this time of year, and probably was, but that’s what it takes in order to write the new machine’s “ship-helicopter operating limits” manual.

Prototype ZZ402 also tested its mission systems, night-vision cockpit and navigation systems. The Navy will continue toward the type’s 2015 fielding goal by performing future tests of its radar, electro-optics, navigational kit, and compatible missiles. UK MoD.

Jan 23/12: Denmark. AgustaWestland signs a Heads of Agreement (HoA) with Denmark’s Systematic A/S to jointly explore business opportunities worldwide, including integration of the SitaWare range of systems with AgustaWestland’s helicopters

They’ll also cooperate on the Danish Maritime Helicopter Programme. AgustaWestland is proposing the AW159 helicopter to replace Denmark’s earlier-generation Lynxes, but they will face competition from Sikorsky’s MH-60R, and probably from the European NH90-NFH. Both competitors are larger helicopters. AgustaWestland.


Testing; training. LMMs/FASGW-L on
AW159 SCMR, Apache
(click to view full)

Nov 7/11: Testing. The AW159’s first at-sea landing on a ship begins 4 weeks of ‘operating limit trials.’that will include ground scenarios, as well as RFA Argus. UK MoD.

June 21/11: Denmark. AgustaWestland signs a cooperation agreement with Denmark’s Terma A/S to jointly explore business opportunities in the fields of aircraft survivability equipment, 3D-Audio, advanced aero structures and other equipment.

The two companies already have cooperated successfully on the AW101 helicopter, which Denmark has bought. They’re hoping that the Danish Maritime Helicopter Programme will also buy the AW159 Wildcat, to replace earlier generation Lynx maritime helicopters. AgustaWestland.

June 20/11: The AW159 Lynx Wildcat flies at the Paris Air Show, and the firm offers a progress report.

The 3 test helicopters have completed over 250 of 600 flying hours. Wildcat #1 will start hot and high trials in the USA in June 2011, and Wildcat #3 will undertake Shipborne Helicopter Operating Limit (SHOL) trials in October 2011. Wildcat #2 recently completed chaff and flare firing trials, and is focused on integration of the avionics and mission sensors. A production helicopter has begun flying, and 6 more are undergoing final assembly.

AgustaWestland is currently negotiating with the UK MoD on a comprehensive IOS through-life support contract. AgustaWestland.

April 20/11: Testing. The 1st production AW159 performs its maiden flight at AgustaWestland’s Yeovil facility. Source.

April 5/11: FASGW-L. Thales receives a contract for 1,000 Lightweight Multi-role Missiles (LMM), to equip the UK’s AW159 helicopters as their “Future Anti-Surface Guided Weapon – Light” (FASGW-L). The parties offer no details regarding contract costs, as they’re re-routing funding from an existing project, in order to finalize LMM development and produce the initial set of weapons. The casualty is believed to be Thales’ laser beam-riding, Mach 3.5 Starstreak portable anti-aircraft missile, which reportedly had some of its technology re-used in the less costly LMM.

March 8/11: Training. AgustaWestland announces a GBP 76 million ($122.2 million) contract with the UK Ministry of Defence to design and develop an integrated Lynx Wildcat training solution, including building and equipping a new modern training center at RNAS Yeovilton in South West England, where both Royal Navy and British Army AW159 squadrons will train. The facility will provide training courses for Army aircrew and maintainers starting in January 2013, with training for Royal Navy aircrew and maintainers starting January 2014.

The Wildcat Training Centre will be equipped with a suite of briefing rooms, integrated electronic classrooms and a learning management system, a Full Mission Simulator (FMS), Flight Training Device (FTD) and Cockpit Procedures Trainer (CPT) simulators, any of which will be capable of delivering Army or Royal Navy conversion and mission training. Each of the Full Mission Simulators has 6 degrees of freedom to provide acceleration sensations, and a visual system that complies with JAR-FSTD-H Level D standard. Other synthetic training devices will cover mechanical, avionic and weapon systems. Key suppliers include Indra (Full Motion Simulators and other aircrew training equipment), and Pennant Training Systems (suite of maintenance training aids). The contract for construction of the facility will be awarded later in 2011, but all other work will start immediately.

2009 – 2010

Maiden flight. Export promotion. Maiden flight
(click to play video)

Nov 19/10: Testing. TI3, the 3rd and final AW159 test helicopter, successfully completes its maiden flight at AgustaWestland’s Yeovil facility in the UK. TI3’s main tasks include load survey trials and naval development, including ship helicopter operating limit trials. AgustaWestland.

Nov 19/10: Exports. Shephard’s Rotorhub reports that Britain is already promoting the AW159 Wildcat on the international market:

“Sheehan said the main targets for the aircraft were existing operators of earlier Lynx variants, identifying six in Europe and seven across the rest of the world. In addition, the DSO has been in discussion with the Royal New Zealand Navy (RNZN) about the capabilities of the Wildcat naval variant and Sheehan is meeting with RNZN representatives in early 2011. New Zealand is considering whether to proceed with an upgrade of its SH-2G Super Seasprite helicopters when they are due for one in 2015 or replace the aircraft outright.

…Any export aircraft could mirror the Royal Navy’s equipment package and be fitted with the Selex Galileo Seaspray 7000E active electronically scanned array (AESA) radar, L3 Wescam MX-15D EO/IR imaging system MBDA Sea Skua missiles and Thales LMM missiles. The aircraft could also be fitted with the Thales FLASH (Folding Light Acoustic System for Helicopters) dipping sonar if required. Sheehan was also bullish about the Wildcat having seemingly emerged unscathed from the [SDSR], suggesting the requirement may even increase from the current order of 62 once the wider effects of the SDSR are digested by the MoD.”

Oct 14/10: Testing. TI2, the 2nd AW159 test helicopter successfully completed its maiden flight at AgustaWestland’s Yeovil, UK facility. TI1 continues to perform air vehicle and flight envelope testing, while TI2 will undertake the flight testing of the aircraft’s core avionics and mission systems, following testing on AgustaWestland’s Full Systems Integration Rig (FSIR).

AgustaWestland has now also established a new AW159 production facility at its Yeovil plant that introduces a pulse line production system. They hope to make big efficiency improvements in the final assembly process. AgustaWestland.

Nov 11/09: Testing. The 1st AW159 successfully completes its maiden flight at AgustaWestland’s Yeovil facility, with AgustaWestland Chief Test Pilot Donald Maclaine at the controls. Another 2 test aircraft will join this machine in 2010, in order to complete the AW159 and mission equipment flight testing.

To date, AgustaWestland says the program has remained on time and on budget for all of its major milestones. The first operational aircraft is still scheduled for delivery in 2011, and the Lynx Wildcat is still slated to reach full operational capability with the Army in 2014 and the Royal Navy in 2015. AgustaWestland release.

Maiden flight

April 24/09: Renamed – and Reduced. During a ceremony at AgustaWestland’s Yeovil facility, the Future Lynx is officially renamed the AW159 Lynx Wildcat. UK MoD | The AgustaWestland release states that:

“62 AW159s will be initially procured by the UK MoD, 34 for the British Army and 28 for the Royal Navy… continues to be on time and on budget and was the first major project to be awarded under the Strategic Partnering Arrangement signed by the UK Ministry of Defence and AgustaWestland in June 2006. AgustaWestland has also signed partnering agreements with a number of key supplier on the Future Lynx programme including Selex Galileo, a Finmeccanica company; GKN Aerospace, LHTEC – a partnership between Rolls-Royce and Honeywell, General Dynamics UK, Thales UK and GE Aviation. The first flight of the aircraft is on schedule to take place in November 2009 with the first airframe having entered final assembly in November 2008, ahead of schedule. AW159 deliveries will commence in 2011 and it will enter operational service with the British Army in 2014 and the Royal Navy in 2015.”

“AW159 Wildcat”

2007 – 2008

Subcontractors. BRH concept
(click to view full)

Dec 14/08: The unofficial British Navy Matters site offers its year in review for 2008. It highlights a number of negative trends, and has this to say about the Future Lynx program:

“The Future Lynx helicopter project finally seems to secure, but the order announced in 2006 of 30 helicopters plus 5 options for the Royal Navy has been reduced to 28 aircraft. Back in 2001 the RN was hoping for 60 new helicopters.”

Nov 13/08: Sub-contractors. GKN Aerospace delivers the first complete Future Lynx Airframe to AgustaWestland on schedule. The firm reports that it has achieved challenging an 80% reduction in parts count when compared with the existing Super Lynx airframe. GKN release.

July 14/08: Sub-contractors. GE Aviation announces a contract from AgustaWestland to provide the Integrated Cockpit Display System on 70 Future Lynx and 30 Merlin Capability Sustainment Plus (MCSP) helicopters for the UK Ministry of Defence. The contact is valued at more than $55 million over the next 10 years, with production deliveries commencing in early 2009.

The integrated cockpit display system includes a smart 10″ x 8″ Integrated Display Unit (IDU), flexible & adaptable Remote Interface Unit (RIU) and 2nd Generation Integrated Standby Instrument System (ISIS).

May 21/08: Sub-contractors. GKN Aerospace announces that they have commenced Super Lynx airframe assembly on schedule at the Company’s Yeovil, UK facility, following a design-to-cost program. In order to meet these goals, the new design makes extensive use of monolithic machined components instead of a traditional fabricated detail structure; overall, the airframe’s parts count has been reduced by 80%, instead of the originally forecast 30%.

During production, digital assembly instructions developed by GKN Aerospace directly from CATIA v5 will be presented to each individual on a stand alone wireless IT workstation, while state-of-the-art assembly tooling improves production mechanics.

Nov 1/07: Sub-contractors. BAE Mobility & Protection Systems announces a contract from AgustaWestland to design, develop, and provide 140 S5000 crew seats, plus 340 S3000 troop seats and interface frames, for use on the UK’s Future Lynx helicopters. Deliveries are slated tp run from 2011-2016.

The crashworthy Armor Holdings S5000 crew seat has mission adaptive armor for the seat pan and backrest, and incorporates a state-of-the-art 5-point harness with a dual action rotary buckle, armrest, headrest, adjustable thigh and lumbar support, and a folding armored wing panel to increase the lateral protective area. The S5000 crew seat features field installation of less than one hour and provides maximum ballistic protection.

The S3000 rear cabin troop seats include state-of-the-art 4-point lightweight restraints with a rotary buckle. The modular seat frame system features quick installation and removal of interface fittings from frames through the use of 4 quick release pins. The cabin seat can be installed in aft, forward, and side facing locations, allowing flexibility for different cabin layouts. BAE Systems release.

Oct 30/07: Sub-contractors. AgustaWestland announces that the first monolithic machined panel for the first Future Lynx (a BRH Army variant) was manufactured last week at Oldland CNC’s facility in Bristol, United Kingdom. The manufacture of the first component, a lower fuselage bulkhead, was witnessed by representatives from the UK Ministry of Defence Integrated Project Team and AgustaWestland.

Oldland CNC is manufacturing 83 of the 147 Future Lynx primary structure monolithic machined components and supplying them to GKN Aerospace for incorporation into the airframe prior to delivery to AgustaWestland. The first Army variant remains on target to fly late 2009.

Feb 19/07: SCMR radar. Finmeccanica subsidiary Selex Sensors and Airborne Systems (Selex S&AS) received a contract from AgustaWestland to provide the multi-mode e-scan surveillance radar for the Royal Navy’s variant of the Future Lynx helicopter.

The GBP 20 million (currently about $39 million) contract will see the Selex S&AS Seaspray 7000E AESA (Active Electronically Scanned Array) radar installed as the scan and targeting radar for the Navy’s Surface Combatant Maritime Rotorcraft (SCMR) as it monitors the sea lanes, launches missiles, et. al. The Seaspray 7000E combines a state of the art active electronically scanned array with a commercial off the shelf processor, and covers both air-to-air and air-to-surface scanning. AESA radars feature improved range and capabilities, while requiring less maintenance. See SELEX release | Seaspray 7000E datasheet [PDF].

2005 – 2006

Future Lynx contract. Subcontractors. SCMR concept
(click to view full)

July 27/06: Sub-contractors. GKN Aerospace will supply the complete, assembled airframe for all 70 Future Lynx helicopters. They will be responsible for managing the entire supply chain for this work and will assemble the airframe at Yeovil, prior to delivery to AgustaWestland. This contract is valued at approximately GBP 50 million (roughly $80 million) through to 2016.

GKN Aerospace has been supplying assemblies for the Lynx airframe for over 20 years, and for the last 5 years it has supplied all Lynx airframes to AgustaWestland. The new Super Lynx airframe will continue to be manufactured in aluminum, but will incorporate monolithic machined components to reduce the component count by some 30%. See release.

July 17/06: Sub-contractors. AgustaWestland awards Thales a 10-year, GBP 60 million contract for Future Lynx avionics. Thales UK will provide core elements of the avionics management, communications, and navigation systems, as well as taking responsibility for the integration of some of the Commercial Off The Shelf equipment within the Navigation and Communications sub-systems. The Thales Secure Communications Control System (SCCS), which is at the heart of the communications system, is from the family of TopSIS products. It is already selected and fitted on a number of aircraft including the UK’s Chinook Mk2/2A helicopters and ASTOR Sentinel R1 reconnaissance aircraft, as well as the Australian MRH-90 transport and Tiger reconnaissance/ attack helicopters, and its Airbus 330-derivative Multi-Role Transport and Tanker aircraft. See release.

July 17/06: Sub-contractors. AgustaWestland has awarded Smiths Aerospace a contract to supply the new SDS-5000 large area cockpit display system for the new Future Lynx helicopter. The Smiths Aerospace 10″ x 8″/ 25 cm x 20 cm liquid crystal displays provide more than 70% additional display area compared to the existing Smiths’ SDS-4000 display system which it replaces. Design and development has commenced, manufacture will take place in Cheltenham, UK, and deliveries to AgustaWestland will begin in 2008. The contract value was not announced in the release.

July 5/06: Sub-contractors. Smiths Aerospace has been awarded a $21 million contract for the development and supply of its comprehensive HUMS technology for the Future Lynx. The contract involves the implementation of the Smiths combined Health & Usage Monitoring System and Cockpit Voice & Flight Data Recorder (HUMS/CVFDR) capability on all 70 of Britain’s Future Lynx aircraft. Development is due to commence this year at Smiths’ facilities in Southampton, UK and in Michigan, USA, with deliveries scheduled to commence in 2011.

The Future Lynx HUMS will continuously monitor the fleet wide health and performance of safety-critical components, providing advance warning of potential equipment failures and collecting valuable data for routine maintenance of each aircraft. HUMS sensors monitor the health and usage of the engines, transmission, drive-train system, rotor system and airframe by detecting and diagnosing potential failures, recording usage, automating test procedures and providing alerts for potential maintenance actions. The HUMS also provides continuous Rotor Track and Balance (RTB) capability, negating the requirement for the installation of carry aboard equipment and the overhead for dedicated RTB check flights. This feature will be operational in advance of the UK’s operational use of the aircraft, in time for the Super Lynx flight trials phase.

June 22/06: Sub-contractors. General Dynamics UK Limited announces a GBP 24 million (about $44 million) contract from AgustaWestland for the design, development and manufacture of an Advanced Tactical Processor for the UK’s Future Lynx Programme.

The Tactical Processor will be based on GDUK’s combat proven family of open systems computers, and will host software applications that interface to the hardware using an Allied Standard Avionics Architecture Council (ASAAC) standard based 3-layer software stack. It will also provide a sophisticated video processing and distribution function, embedded mission recording and playback and a digital map capability that is common to the UK’s Merlin Mk3 support helicopter. The new helicopters ATP will also feature 2-way data communication with the GD designed BOWMAN network.

June 22/06: Strategic Partnering Arrangement for Future Lynx Program signed between the UK MoD and AgustaWestland. This solidifies the GBP 1 billion order for 70 helicopters, which is worth $1.9 billion at the time.

June 13/06: Business Transformation Incentivisation Agreement signed between the UK MoD and AgustaWestland. AgustaWestland release.

Future Lynx contract

March 24/05: Future Lynx selected as the preferred option for UK land and sea helicopter requirements. See DID coverage.

Additional Readings Background: Helicopter

Background: Ancillaries

Official Reports

News & Views

Categories: News

US Army Modernization: Not In a Good Place

Fri, 10/17/2014 - 12:00

  • US Army Acquisition Undersecretary Heidi Shyu described her service’s modernization efforts as approaching a “death spiral.” That it not just the type of anti-sequestration rethoric we’ve grown used to, as Shyu sounds genuinely frustrated with the amount of paperwork that program managers have to file for each program milestone.

  • Case in point, the US Army’s follow up to the ill-fated GCV has been dubbed the Future Fighting Vehicle (FFV) and will remain [Army Times] just a notional program until at least 2016.

  • The CSIS think tank released its analysis of US defense contract spending over 2000-13, which is the topic of today’s video further below. There are plenty of good charts in this report, including one illustrating the dramatic shrinkage in land vehicle procurement.

  • It’s our understanding that readers who have not answered our annual survey yet are overwhelmed with guilt. It’s OK, here’s the link.

DoD Regulations


  • The Us Navy announced that 2 BMD destroyers currently homeported in California will be based in Japan by 2017, in order to firm the Administration’s bellyflop to the Pacific.


  • Russia is to start operating [Xinhua] a new radar station in Kaliningrad in December.

Human Factors

  • The French Air Force has been measuring human factors [in French, with video] such as vigilance and tiredness to maximize crew use on A400Ms without compromising safety.

US DoD Spending Trends
Categories: News

WON By Default: Korea’s E-737 AWACS

Thu, 10/16/2014 - 16:47
(click to view full)

Other countries have criticized the USA’s ITAR policy for being as much about unfair trade competition as it is about genuine security. August 2006 events in Korea would certainly appear to strengthen their case… and a Nov 8/06 KOIS report put the final nail in by announcing a $1.6 billion contract “win” for 4 Boeing E-737 early-warning aircraft. Yet Boeing was always the ROK’s second choice, and its “win” came about by default.

A pair of December 2005 articles covered the $1.8 billion competition for South Korea’s E-X airborne early warning & control (AEW&C) aircraft, designed to detect incursions into ROK airspace and act as a sort of air traffic control for the air war. At the time, South Korea had no AWACS assets, relying solely on its allies; by 2012, it wanted at least 4 aircraft. In response, there were 2 main competitors…

The (Rail) Road to a Deal G550 CAEW
(click to view full)

Boeing’s E-737 “Wedgetail” AEW&C was matched up against an American-Israeli consortium of General Dynamics Gulfstream, L-3, & IAI Elta, offering a G550 CAEW platform based on the Gulfstream 550 long range business jet. It sold for about $400-500 million less overall, and was reportedly favored, but the need for US permission under ITAR to incorporate certain technologies was holding up the sale.

The items on the interference list hardly constitute unusual technologies, and are exported all the time:

  • Data Links (Link 11 and Link 16/MIDS capabilities) for automatic data exchange with other aircraft, ground stations, air defense units, etc.;
  • IFF (Identification Friend or Foe);
  • The Satellite communications module;
  • The UHF/VHF Have Quick Radio;
  • GPS P(Y) code technology.

Eight months after the December 2005 articles, Boeing’s E-737 was selected. By default. After an announced competition delay in December 2005, an August 2006 news report noted that:

“Elta, a subsidiary of Israel Aircraft Industries, was dropped off as it failed to guarantee obtaining required export licenses from the U.S. government regarding key items to be installed on its product for the sealing of the contract, a DAPA [South Korea's Defense Acquisition Program Administration] spokesman said.”

Industrial Team E-737 Cutaway
(click to view full)

Price negotiations followed, with a formal announcement taking place in November 2006. The ROKAF’s E-737s are based on the 737-700, and carry a flight crew of 2 and a mission crew of 6-10 people. Maximum range is listed as 3,800 nautical miles, with 9 hours time on station at an altitude of 30,000 – 41,000 feet.

Northrop Grumman Electronic Systems provides the Multi-role Electronically Scanned Array (MESA) L-band radar. It’s able to track around 1,000 airborne and maritime targets simultaneously, and can help the mission crew direct fighter aircraft while continuously scanning the operational area. It’s more advanced than the radars that equip current American AWACS planes, and the electronically steered beams mean that it doesn’t need the iconic rotating dome up top. Instead, the radar is fixed in a more aerodynamic housing that looks like a top hat.

Korean Aerospace Industries (KAI) will perform aircraft modification and mission equipment modification and checkout. Modification of the 1st aircraft took place at a Boeing facility, but KAI modified the remaining 3 aircraft in Saechon, Korea, and provides ongoing technical services, spares supply, and related parts-handling. Other Korean companies that made key contributions to the AEW&C program include:

  • LIG Nex1: networking and training
  • Samsung Thales: mission crew training.
  • Boeing Training Services Korea: flight crew training
  • Huneed Technologies: ground-based datalinks communications system.

Contracts & Key Events ROKAF “Peace Eye”
(click to view full)

Oct 15/14: 2 more? China’s unilateral November 2013 declaration of an Air Defense Identification Zone, which includes some Korean territory, is pushing the ROK to upgrade its high end armed forces. At sea, they’re contemplating 3 more cruiser-sized AEGIS BMD ships. In the air, South Korea will buy aerial tankers to extend patrol and strike ranges, and…

“For surveillance over the KADIZ, we are seeking to secure two more such [Peace Eye] planes over the long term,” said an official at the Air Force, asking not to be named.”

Sources: Korean Herald, “Air Force mulls buying additional early warning aircraft”.

March 27/14: Support. Boeing has reportedly asked for WON 290 billion / $270 million to support the ROKAF’s E737 “Peace Eye” fleet from 2015 – 2018, which about double what the government had budgeted:

“We have requested that Boeing submit details of the technology support programs,” a ministry official said. “The ministry plans to sign a deal in August after cutting the price through negotiations.”

They may. On the other hand, the ROKAF has bought the planes, and they fulfill a very strategic role. It isn’t like they can afford not to come to an agreement. Sources: Yonhap, “U.S. demands sharp rise in price of F-15K’s sensor parts”.

Oct 24/12: Final Delivery. Boeing and KAI deliver the ROKAF’s 4th and final E-737 “Peace Eye” AEW&C, 5 weeks ahead of schedule. Boeing.

Final delivery

May 16/12: #3 delivered. Boeing delivers South Korea’s 3rd Peace Eye 737 AEW&C aircraft to ROKAF Base Gimhae, the main operating base for the Peace Eye fleet. This is the 2nd aircraft in the fleet to be modified into an AEW&C configuration by Korea Aerospace Industries (KAI) at its facility in Sacheon. Boeing.

Dec 13/11: #2 delivered. South Korea’s 2nd E-737, and the 1st modified by KAI, is delivered ahead of schedule to ROKAF Base Gimhae. Boeing Peace Eye program manager had high praise for KAI’s quality and technical expertise. KAI will modify 2 more planes in Sacheon, for delivery to the ROKAF in 2012. Boeing.

Peace Eye arrives
(click for video)

Aug 1/11: E-737 #1. South Korea’s 1st “Peace Eye” 737 AEW&C aircraft lands at Gimhae AB, about 450 km southeast of Seoul, with all modifications installed. The ROK DAPA says that:

“The first E-737 completed tests by our Air Force at Boeing’s factory in Seattle… It will go through test flights and acceptance tests before it’s handed over to our Air Force in early September.”

KAI’s Saechon facility is modifying the other 3, which will be delivered throughout 2012. Yonhap | JoongAng Daily | Korea Herald | Flight International.

1st “Peace Eye” delivery

Feb 4/10: Boeing delivers the first 737 AEW&C aircraft to South Korea for modification. The 737 lands at the Korea Aerospace Industries (KAI) facility in Sacheon, some 430 km southeast of Seoul, where it will be fitted with the electronics and equipment its role requires. Final ROKAF handover is expected in 2011. Defense News.

Dec 17/07: Sub-contractors. BAE Systems announces a $37 million contract from Boeing to provide mission computer system suites for the E-X program’s 4 E-737s, along with 3 software development labs to support development, integration, and training of the new mission computer system.

The mission computer suite consists of a computer processor with embedded map server and flight-deck tactical display. The suite’s architecture is derived from the telecommunications industry, and provides all central mission computing, mass data storage, and high-speed local-area network capability. It also features a communications control processor that provides interfaces to all aircraft sensor and communication subsystems. BAE believes that using a telecom architecture offers lower weight and cost, while offering increased processing capability and a path for future technology insertion.

In its release, BAE Systems also claims that this development of telecom computer architecture for military use is among the first military applications of this technology.

Nov 8/06: Boeing announces the $1.59 billion contract for four 737 airborne early warning and control (AEW&C) systems. The contract also includes ground support segments for flight and mission crew training, mission support, and aircraft and system modification support. Delivery of the 1st 737 AEW&C aircraft under the Foreign Military Sale “Peace Eye” program is scheduled for 2011. The remaining 3 aircraft are scheduled for delivery in 2012.

Nov 8/06: That announcement took until November, but it has come. The ROK’s Defense Acquisition Program Administration (DAPA) announces that DAPA’s supreme committee chaired by Defense Minister Yoon Kwang-ung had formalized the decision, and signed a $1.6 billion contract with Boeing for its E-737 aircraft under the “Peace Eye” Foreign Military Sale program.

Peace Eye contract

Op Ed/ Analysis (August 2006)

Security restrictions on military technology transfers, and even political restrictions, are not uncommon for Western countries. The breadth of US global interests, and the importance of interoperability with allies, place the USA in a unique position. The demands of that position require careful balancing and the appearance of scrupulous fairness, however, or the result will be a series of “wins” that actually erode both the USA’s allied interoperability and its global clout over the long term.

Two other items in our Aug 4/06 coverage offer excellent illustrations of these imperatives in action.

We’ll begin with the F-35 Lightning II Joint Strike Fighter, one of the largest military programs in the world with estimates as high as $279 billion. A recent deal between the USA and Britain forestalled an impasse that could have led to the unraveling of much of the international consortium, increased costs per aircraft, and left a serious cloud over the export potential that’s essential to the F-35’s long term business case. Note that one of the key issues was the ability to create third-party add-ons. Integration of foreign equipment without requiring US say-so was another. The fact that those were 2 of the 3 major issues is telling in and of itself.

Fortunately, high-level diplomacy conducted in a spirit of fairness appears to have headed a major dispute off at the pass.

Next, note our coverage of the (canceled) Venezuela deal for 12 EADS-CASA transport aircraft from Spain. Regardless of whether or not one agrees with the restriction or its rationale, there can be no question that the lost sales will be keenly felt on a political level due to lost jobs in Spain, even though EADS’ corporate parent may see it as an acceptable trade for access to the US market. A major and separate deal from Brazil for its Super Tucano aircraft was also blocked – this time, with no offsetting consolation either economically or politically.

The result must inevitably be resentment, in both locations. The fact that the USA has a consistently expressed security concern with the country in question will be a mitigating factor, because at least the decision is not seen as utterly capricious. To some extent, the USA must simply pay this price as part of the policy cost of working to make Venezuela’s arms build-up more difficult – though our Feb 14/06 “Love on the Rocks” article did note that the US had options that would have both furthered its own global objectives and cushioned the blow in Brazil.

It may eventually wish that it had pursued those options. While EADS is now tied to the US market by golden handcuffs, Embraer and many European companies who lack such ties may well be thinking hard about minimizing future US technology inputs in their products. This may be an acceptable cost if the USA considers its Venezuelan policy goal important enough, but it will chip away at the edges of future US influence in such sales by providing it with fewer opportunities to invoke ITAR export restrictions. As a mitigating factor, crossing the USA on issues it considers highly important is always understood to have costs. Unless one plans in advance to sell to rogue regimes, therefore, the Venezuelan example is unlikely to fuel a big “buy any except American” dynamic because of the effort, expense, and possible cost to buyer appeal of going with substitutes.

Which brings us to the Korean E-X competition. Whether or not ITAR was in fact deliberately used to hinder a competitor that included non-US firms, that is certainly the appearance. This, we submit, is the most damaging possible message – especially because it confirms a widespread but quiet suspicion within the international defense industry.

If the issue is simply that one should hesitate before crossing the USA on major foreign policy issues (Venezuela), or that pressure is required to make the USA do the right thing (F-35), that is one thing. If the issue is that using American technologies will cut one’s export potential across the board because it will be used against you in competitions, that’s a very different kettle of fish. That perception would be material enough to affect the calculus for major items like engines and electronics when developing new platforms. If it does, the result is fewer ITAR levers for the USA, less compatibility with foreign designs, and a long-term loss of work in its defense sector to offset the more visible short-term wins.

Note also the technologies that became sticking points in the E-X sale: GPS. Link 11 and Link 16/MIDS. IFF. Minor technologies all, which became broad and important allied standards under US/NATO leadership.

As the EU prepares its own rapid deployment forces as a clear parallel force to NATO, and pursues global projects like the Galileo GPS satellite constellation, they are already likely to push for more “made in Europe” interoperability standards, as opposed to US/NATO specifications. They will be built for interoperability with American equipment, of course, or at least trumpeted as such – but they will also be built to allow solo operation.

It will be much easier to get countries and firms to go along with independent standards, if they see them as a hedge against unfair American export competition. In addition, the creation of a market for such technologies is likely to create a production base of minor players who can step in as substitutes for other components down the chain, without worrying about the potential effect on their own (nonexistent) US exports.

Countries, and companies, understand security concerns. They also understand the requirements of geopolitics. So long as their opinion of one’s geopolitics is that it lives within the realm of reason, geopolitical effects on production decisions will be minimal. The appearance of undue advantage or exploitation of those security concerns as a front, however, will not be understood or accepted. If that view becomes prevalent, the result will be a long-term set of changes in the market that make any short term wins a pyrrhic victory indeed.

In our opinion, the USA needs to take a hard look at its ITAR processes, and the way they are being handled. Other countries and firms around the world are already doing so – and their gaze is not friendly.

Additional Readings

Export Control Issues

“The only way to resolve technology access and U.S. government export restrictions imposed by ITAR is by “not including any U.S.-sourced technology into our products,” [Dassault CEO Charles Edelstenne] the President of the Aerospace and Defense Industries Association of Europe (ASD) said yesterday… In the context of space programs, steps are already being made towards completely excluding U.S. input in order to stay clear of the ITAR restrictions, adds Francois Gayet, the permanent Secretary-General of the ASD…”

Categories: News

The USA’s DDG-1000 Zumwalt Class Program: Dead Aim, Or Dead End?

Thu, 10/16/2014 - 16:30
67% of the fleet
(click to view full)

DID’s FOCUS Article for the DDG-1000 Zumwalt Class “destroyer” program covers the new ships’ capabilities and technologies, key controversies, associated contracts and costs, and related background resources.

The ship’s prime missions are to provide naval gunfire support, and next-generation air defense, in near-shore areas where other large ships hesitate to tread. There has even been talk of using it as an anchor for action groups of stealthy Littoral Combat Ships and submarines, owing to its design for very low radar, infrared, and acoustic signatures. The estimated 14,500t (battlecruiser size) Zumwalt Class will be fully multi-role, however, with undersea warfare, anti-ship, and long-range attack roles. That makes the DDG-1000 suitable for another role – as a “hidden ace card,” using its overall stealth to create uncertainty for enemy forces.

True, or False?
(click to view full)

At over $3 billion per ship for construction alone, however, the program faced significant obstacles if it wanted to avoid fulfilling former Secretary of the Navy Donald Winter’s fears for the fleet. From the outset, DID has noted that the Zumwalt Class might face the same fate as the ultra-sophisticated, ultra-expensive SSN-21 Seawolf Class submarines. That appears to have come true, with news of the program’s truncation to just 3 ships. Meanwhile, production continues.

Zumwalt Class: Program and Participants

As of December 2012, DDG 1000 Zumwalt was about 80% complete and scheduled to deliver in July 2014, with an Initial Operating Capability in July 2016. DDG 1001 Michael Monsoor was about 48% complete, and DDG 1002 (now Lyndon B. Johnson) was just beginning construction preparations.

The most striking thing about the Zumwalt Class program as a whole is the seismic jump in R&D costs. This is hardly surprising given the number of very new technologies involved, and the 2 program restarts along the way. Overall procurement costs have dropped as ship numbers dropped from 32 to 3, but on a per-ship basis they soared from $1.02 billion to $3.71 billion.

The Navy’s build-cost figure has been disputed by past Congressional Budget Office reports, which placed the total even higher at $5.1 billion. The Navy claims that the CBO’s estimate doesn’t consider shipyard improvements that change the build process, a more mature detailed design that has been built several thousand times by computer (a capability developed as a “lesson learned” from the Arleigh Burke program); and the roughly $500 million per ship that is being contracted for on a firm-fixed-price basis. On the other hand, the CBO has been right, and the Navy wrong, when estimating other recent shipbuilding programs.

With DDG 1000 Zumwalt rounding toward completion, we should know who’s right pretty soon. Key members of the DDG-1000’s industrial team include:

Program History: The Long and Winding Road 2006 Schedule
(click to view full)

The Zumwalt Class’ path to fielding has taken a long time, and seen several twists and turns. Given the sheer number of new technologies involved, that may have been a good thing, but the long gestation period has also hurt the program in other ways.

Northrop Grumman Ship Systems’ Ingalls shipyard led the “DD 21 Gold Team” through Phase I (System Concept Design) and Phase II (Initial Systems Design) from 1995-2001, until the program was suspended on May 7/01 pending that Quadrennial Defense Review and other key studies.

In November 2001, the DD 21 Program was restructured as the DD (X) Program. The Navy was directed to conduct a Spiral Development Review (SDR), to revalidate some requirements; and to assess the merits of achieving various levels of capability across a family of ships, including a Littoral Combatant Ship (LCS) and the next-generation CG (X) cruiser. The Request For Proposal for Phase III was issued Nov 30/01.

The Gold Team won on April 29/02, but the contract was delayed until the US Government Accountability Office denied General Dynamics’ protest On Aug 19/02. At that point, a firm winner could be declared. The winning “National Team” was led by Northrop Grumman, and included Raytheon IDS as the prime mission systems equipment integrator for all electronic and combat systems. Other major subcontractors included Lockheed Martin, BAE Systems, and Boeing. It even incorporated “Blue team” leader General Dynamics Bath Iron Works as a subcontractor for design and test activities.

By mid-spring 2005, however, a new DDI (design, development & integration) contract was signed. The Navy designated 4 Prime Contractors, to be coordinated through a Navy-Industry DDG-1000 Collaboration Center run by Raytheon. The current Prime Contractors are:

  • General Dynamics Bath Iron works (ship design & build)
  • Raytheon (mission systems integration which includes sensors, combat systems, electronics, and the PVLS)
  • BAE Systems (AGS gun system)
  • Northrop Grumman Ingalls (ship design & build, relinquished build role)

On Nov 23/05, the Undersecretary of Defense for Acquisition signed the “destroyer acquisition memorandum,” approving the DDG 1000 program to proceed with Milestone B, and commencing detail design and construction of the first ships. On April 7/06, the program got its second name change from DD-21 and then DD (X), to its official and formal designation as the DDG-1000 Zumwalt Class.

As construction begins, Congressional resolutions have dissolved the US Navy’s original “winner take all” shipbuilding approach; the first 2 DDG-1000 destroyers will now be built at Northrop Grumman’s Ingalls yard in Pascagoula, MS; and at General Dynamics’ Bath Iron Works in Bath, Maine. This was expected to add up to $300 million to the cost of each ship, but was expected to help to keep the USA’s industrial base options open for future efforts like CG (X) etc.

Strong arguments can be made for both the Navy’s original option and Congress’ mandated approach… and have been. Under the Navy’s proposed new “Dual Lead Ships Strategy,” the USN planned to benchmark these lead ships from each shipyard against each other, and revisit its options around FY 2009.

That became a moot point when the DDG 1000 program was truncated at 3 ships, a development that ironically led the program back to its original single-builder strategy. Zumwalt Class ships will be built at Bath Iron Works, with Northrop Grumman (now Huntington Ingalls) supplying the composite deckhouse superstructure for all 3 ships.

CG (X) was slated for termination in the FY 2011 budget, and will be replaced by DDG-51 “Flight III” destroyers as of about 2016. Those ships will be built in alternating yards by General Dynamics Bath Iron Works and by Northrop Grumman. The question now is whether cost growth and engineering challenges for the Flight IIIs will begin to push them to a level that re-starts debate over building more Zumwalts.

DDG-1000 Key Technologies and Features DDG-1000: key features
(click to view full)

The Zumwalt Class is currently in the middle of the production phase. When finished, the class is projected at 14,500t, almost 3 times the displacement of some frigates. In other eras, it would have been called a cruiser or even a battlecruiser. A follow-on CG (X) cruiser was also contemplated, and the issues faced by the DDG-1000 Program had a significant influence on its ultimate cancellation. In practice, the 3 DDG-1000s are America’s future cruisers.

Several of the Zumwalt Class’ sub-systems represent entirely new technologies, as seen in the graphics above and below. Some of the key innovations include:

All-aspect Stealth. To achieve survivability in littoral regions close to shore, DDG-1000 ships will be reliant on their ability to see their surroundings and counter threats, while being difficult to detect. The goal is a 50-fold radar cross section reduction as compared to current DDG-51 Arleigh Burke Class destroyers.

To achieve that stealth, the destroyer’s “tumblehome” inward-sloping hull, shaping, composite superstructure, and other stealth measures are meant to reduce radar, infrared, and other signatures. The ship’s shape reduces its visible wake in the water, and its all-electric power system is quieter. Even the ship’s internal lighting system represents advances in this area.

Sensors Tech features

Dual-Band Sonar. A dual-band hull sonar is a first for American naval ships, and so is its packaging. The Zumwalt Class’ AN/SQQ-90 sonar system includes the AN/SQS-60 hull-mounted mid-frequency sonar; the AN/SQS-61 hull-mounted high-frequency sonar; and the AN/SQR-20 multi-function towed array sonar and handling system. The sonar system can reportedly be operated by 1/3 the number of crew members required for the AN/SQQ-89 systems on current Arleigh Burke Class destroyers and Ticonderoga cruisers, and the range of frequencies should help find submarines in a wider variety of conditions. Correlation between the ship’s 3 sonars may even produce improved resolution, but the Navy isn’t talking.

Like the ship’s computing environment, the sonar system is packaged in Electronic Module Enclosures (EMEs), which roll in as units and combine the commercial off-the-shelf electronics that power the hull-mounted sonars with shock mitigation, electromagnetic interference protection, thermal conditioning, security and vibration isolation. The electronics to power and control the ship’s hull-mounted sonar arrive in a single, smaller package that’s fully integrated and tested, including the transmit/receive amplifiers, and associated processors that distribute signals and data to the ship’s command center.

Total Ship Computing Environment (TSCE). Rather than doing this piecemeal on a per system basis, the idea is to have an integrated but open architecture approach from the very beginning. This creates a single IT framework, and makes it easier to integrate commercial-off-the-shelf (COTS) hardware and software like IBM blade servers and Cisco routers. That allows the Navy and the prime contractors to use more conventional commercial acquisition approaches/ partnerships to support and upgrade the technology, and also improves wider interoperability. A total of 16 factory configured and tested Electronic Modular Enclosures (EMEs) are distributed throughout the ship. EMEs protect the equipment inside, and the client/server architecture ensures that any workstation can run any task, unlike past ships that have depended on task-focused consoles. The entire assembly is controlled by the TCSE software.

TSCE will be about 8 million lines of code, but it actually connects with about 20 million lines of code reused from other programs (AEGIS, SPQ-89, NAVSSI), plus the secured commercial operating systems, databases, and middleware that underpin the entire infrastructure. TSCE’s functionality is being developed as services, with set interfaces to the underlying commercial software and proprietary code. This allows changes to take place on both ends with minimal disruption of each service. The advances made by TSCE will in turn be reused in the new CVN-78 carriers and CV-X cruisers because of its services framework, design for reuse, and open architecture. That’s good, because $117 million per Zumwalt Class ship is a sizeable investment[1].

TSCE is currently at Release 5/6, and coding for Release 6 is underway. IBM is partnered with prime contractor Raytheon for this component; other key subcontractors include Lockheed Martin.

Dual-Band Radar (now just SPY-3 X-band). For detection and self-defense, the DDG-1000 was going to rely on a new approach called the Dual-Band Radar, but will now use only the SPY-3. Raytheon’s X-Band SPY-3 radar provides air and surface detection/tracking, and supports fire control. Its use of active array radar technology makes it far more survivable against saturation missile attacks, since it can track and guide against tens of incoming missiles simultaneously. In comparison, the passive S-band phased array SPY-1D radars that equip American AEGIS destroyers and cruisers are limited to terminal guidance against just 3-4 targets at any one time. Active array radars also feature superior reliability, and recent experiments suggest that they could also be used for very high-power electronic jamming, and high-bandwidth secure communications.

The SPY-3 was to be integrated with Lockheed Martin’s active array S-Band volume search radar, and collectively the SPY-3 fore control radar and SPY-4 search array would comprise the Dual Band Radar (DBR) system. The idea was to have the destroyer benefit from the best capabilities of both X-band’s outstanding medium to high altitude performance, and the S-band VSR’s performance in clutter, in order to create a single combat picture. The goal was a 3x improvement over existing AEGIS ships like the DDG-51 destroyers and CG-47 cruisers. In 2010, however, the S-band SPY-4 was cut from the DDG-1000 program. SPY-4 VSR testing will finish, but Raytheon’s X-band SPY-3 fire control radar would be given volume search upgrades, and become the destroyer’s sole radar. DBR will be retained, in smaller form, on the USA’s new CVN-78 Gerald Ford Class aircraft carriers.

Weapons BAE’s AGS
(click for video)

Advanced Gun System. The supposed rationale for the DDG-1000 centers around naval gunfire support for troops ashore. While US battleships with 9 massive 16-inch guns have performed extremely well in this role to date, the DDG-1000 intends to rely on 2 of BAE Systems’ rapid fire 155mm Advanced Gun Systems (AGS), each firing up to 304 advanced Long Range Land Attack Projectile (LRLAP) GPS-guided shells that give the AGS a greatly-extended range of 70-100 nautical miles. The gun will use the AGS Intra-Ship Rearmament System (AIRS) for reloading, providing a safe way of moving AGS pallets between the flight deck and the gun magazine’s pallet hoist, with full performance in conditions up to Sea State 3. Read “Next-Gen Naval Gunfire Support: the USA’s AGS & LRLAP” for fuller coverage of those systems.

BAE is reportedly working on a lighter 155mm AGS assembly that might be suitable for new DDG-51 Flight III destroyers, but it would still weigh twice as much as existing MK45 127/62 caliber naval gun systems. Their joint work with Lockheed Martin on a 5″ LRLAP shell seems likely to pay better dividends,

Beyond the USA, AGS doesn’t have any direct counterparts in other navies yet, but Italy’s OtoMelara has created a rocket boosted, 127/64 caliber GPS-guided shell system called Vulcano, whose shorter range is offset by lower cost compatibility with many existing ships. TBAE and Lockheed Martin are responding with the LRLAP round that fits BAE’s 5″ naval guns, and other firms like Raytheon (Excalibur naval) are offering guided long-range projectiles of their own.

Finally, the Zumwalts have a growth path that other top American ships do not: electro-magnetic weapons. The Zumwalts produce enough power to add lasers for last ditch missile defense and small boat/ anti-helicopter work, once laser technology takes its final operational steps. If enough power can be stored within the ship, future upgrades might even include an electro-magnetic rail gun for ultra-long-range, high capacity guided fire.

Anyone else firing?
(click to view full)

PVLS Missile Launchers. Some additional survivability will come from automated firefighting systems, and even the ship’s missile launchers are designed to contribute. Zumwalt Class destroyers will distribute their 80 missile cells among 20 reinforced launcher sets along the edges of the ship, rather than concentrating them in one central cluster that can be directly targeted by modern missiles. The PVLS system is designed to release and direct the energy from a magazine explosion away from the ship, in order to avoid situations in which the detonation of a round in one cell spreads into catastrophe.

Mk 57 Peripheral Vertical Launching System (PVLS) cells will be larger than the current Mk 41 VLS, allowing them to carry larger missiles, or multi-pack smaller missiles. Raytheon is the prime contractor, with BAE Systems as a subcontractor.

Propulsion Critical tech & status
(click to view full)

All-Electric Power. Another challenge the Zumwalt Class will face is power. Ship electronics continue to require more and more power, and this class is also envisioned as an all-electric ship wherein even gun turrets and other mechanical systems will be electrical, and having separate systems for propulsion and power will no longer be necessary. The use of electric drive also eliminates the need for drive shaft and reduction gears, which brings benefits in ship space, acoustic signature reduction to enemy submarines, and less interference with the ship’s listening devices. Not to mention better fuel efficiency, and the potential to accommodate new electronics, more powerful radars, or even energy weapons and rail guns. The DDG-1000’s expected electrical output is 78 MW, compared to 7.5 MW for the current DDG-51 Arleigh Burke Class – a capacity limitation that’s endangering plans to refit the Burkes with more advanced radars.

The exact choice of engine systems was somewhat controversial. The concept was originally for an integrated power system (IPS) based on in-hull permanent magnet synchronous motors (PMMs), with Advanced Induction Motors (AIM) as a possible backup solution. The design was shifted to the AIM system in February 2005 in order to meet scheduled milestones; PMM technical issues were subsequently fixed, but the program has moved on. The downside is that AIM technology has a heavier motor, requires more space, requires a separate controller to meet noise requirements, and produces one-third the amount of voltage. Once adopted, however, there was little prospect of going back. These very differences would create time-consuming and expensive design and construction changes if the program wished to “design AIM out”.

The AIM system is made by Alstom, who also makes electric-drive motors for cruise ships. CAE will supply the integrated platform management system. A Rolls-Royce MT30 36MW gas turbine has powered the IPS Engineering Development Model in Philadelphia, and has now been ordered for production ships. The MT30 has 80% commonality with the Rolls-Royce Trent 800 aero engine used on the Boeing 777, and Rolls-Royce states that it is the most powerful marine gas turbine in the world.

DRS Technologies Power Technology unit had received development contracts for the PMM motors, electric drive, and control system for the IPS, but lost that role when the program switched to AIM technology. The firm does retain involvement in the ship’s “Integrated Fight-through Power” modules and load centers that take converted electrical power, condition it to get it to the right voltages, and distribute it to 8 redundant zones. If you lose power on the port side of the ship, for instance, you can cross-connect it to the starboard side.

DDG-1000 Issues and Controversies Plan B?
(cick for alternative view)

The Zumwalt Class will incorporate a number of new technologies and capabilities that will make it a very formidable combatant – but it has also had its share of controversies that have included questions concerning its stealth, weapon choices, at-sea stability, cost growth, and the Navy’s future force mix.

Stealth. While the DDG 1000 is designed as a low-emissions ship across a number of wavelengths, it is 50% larger than the already large Arleigh Burke Class destroyers – very nearly the same displacement as the WW2 German ‘pocket battleship’ Graf Spee. On the high seas, it’s a very big ocean; but the Navy wants to take them into the shallow-water littoral zone, where a number of alternative technologies (including swarms of small-medium UAVs with electro-optical equipment, or dhows will cell phones) can be used to find a ship. Once the ship fires its weapons, methods for detecting the ship expand further via options like acoustic sensors. Stealth will still make the ship harder to target and engage, but unlike the Iowa Class battleships, a DDG-1000 will not be able to ignore an Exocet missile strike to its hull.

The Navy believes it can still produce a stealthy enough ship, with enough stand-off range to avoid some threats, and to buy reaction time against others. Naval personnel add that they’re testing the platform to ensure that these goals are met. Some observers are less certain. They also wonder whether a serious, realistic ‘hunt the Graf Spee’ test, using a properly equipped opposing force cleared to use innovative approaches, is even thinkable for a Navy that has invested its prestige and several billion dollars. Without such tests, of course, the only way to find out for sure is the hard way, in battle.

Weapons. One of the issues that did a lot of damage to the DDG-1000 program in its late stages was the revelation that its radar system would not be suited to ballistic missile defense roles, and that modifications to make the radar powerful enough would be problematic. This lack of flexibility proved costly, since cheaper DDG-51 destroyers can be made fully ABM capable using known technologies, while the DDG-1000’s SPY-3 radar and combat system would require the same sort of research program the AEGIS ships went through in order to add BMD capability. The Navy also began to contend that the DDG-1000 wouldn’t be able to use Standard family missiles (SM-2, SM-3, SM-6) , a charge that has been vehemently and persuasively disputed by Raytheon and others. Raytheon also disputes the charge that its SPY-3 radar would be less suited to the BMD role once software additions were made, contending that its performance would be superior to current ships.

The other weapons-related issue was the 155mm Advanced Gun System. It will be capable of rapid, long range, accurate fire that far out-ranges even a battleship gun. War is also about intimidation, however; otherwise, the inaccurate, slow, but loud and intimidating musket would never have replaced the faster, longer-range, more accurate, but less intimidating crossbow. A 155mm shell doesn’t have quite the psychological impact of a 16-inch, volkswagen-size battleship round, and rapid fire to create that effect risks exhausting the DDG 1000’s limited ammunition supply very quickly. Reactivating the battleships was considered, and had some supporters in Congress, but never became a serious option.

Meanwhile, other navies are developing rocket-boosted guided ammunition for existing 127mm guns, to give them 60+ mile ranges. Are the expensive and specialized AGS guns simply unnecessary? Can the killing effect of GPS-guided shells from any gun of 5″/127mm or less provide enough suppression and decapitation to make up for lower intimidation value? Even if they could, can the small number of Zumwalts adequately fulfill that role? Or is the AGS/Zumwalt combination simply the wrong concept for naval fire support?

The 3rd issue is that the Zumwalts falter after the AGS gun and PVLS missiles. These huge and expensive ships lack an interior missile defense using systems like RAM missiles, or last-ditch defenses like the radar-guided Phalanx 20mm gatling gun. That’s a troubling weakness for a ship that has to come in close to shore for naval gunfire support. The original design included 2 BAE Mk.110 57mm guns for that purpose, mounted in stealth cupolas near the helicopter hangar. They serve as main guns for the USA’s Littoral Combat Ship and Legend Class Coast Guard Cutters, combining rapid fire fused-fragmentation air defense, and medium-range targeting of inshore enemies like explosives-laden fast boats. The DDG-1000 program said that the Mk.110s didn’t perform as advertised in tests, removed them, and replaced them with 2 less expensive Mk.46 30mm turrets that can’t engage missiles, helicopters, or other aerial opponents. Until and unless the ships add effective laser weapons, this is going to be an important weakness.

Tumblehome hull
(click to view full)

Ship shape. Tumblehome hull designs that slope outward to the waterline have had a less-than-stellar naval history. The design offers important stealth benefits, but some experts believe that the ship could capsize in a following sea at the wrong speed, if a wave at an appropriate wavelength hits it at an appropriate angle. That would be… expensive, on many levels. Then again, so is a missile in your hull. Experiments have been run in simulated conditions up to hurricane-level and with scale models up to 1/4 scale, in order to determine safety. The Navy believes the design to be safe across an array of conditions whose breadth matches current ships.

As a new design type, however, the Zumwalt Class can never have the certainty of designs that are known and proven over the immense array of conditions encountered by thousands of ships sailing over many decades. New capability comes with risk, but if it proves out, the USA will have expertise in stealthy ship design and construction that puts it well ahead of other countries. Are the experts who believe the design to be unsafe rigid traditionalists, of the same species that dismissed the aircraft carrier when it was new? Or are they offering a prescient warning?

Cost Growth. In the end, this is the biggest issue faced by the DDG-1000 program. Originally slated to cost under $1 billion per ship, the program has grown to the point that 2005 GAO estimates placed likely average construction costs at $3.2 billion per ship, with ship life cycle costs at about double that of the DDG-51 Arleigh Burk Class ($4 Billion vs. $2.1 billion). Further cost increases are possible based on technical project risks, with some estimates climbing as high as $5 billion.

At that cost level, even the US Navy will find itself priced out of the water, unable to maintain enough ships to serve in the envisaged role. That cost profile also leads one to ask whether the Navy would really send something that expensive into harm’s way in dangerous shallow waters near an enemy coast, knowing that they’re gambling with a $3+ billion asset whose cost makes it an extremely attractive enemy target.

Force Structure. The original plan called for 32 DD (X) ships. That shrank to 8, and now just 3. Reagan’s 600-ship Navy is now projected to shrink to just 313 ships in official plans, and even this may not be achievable; a 2005 Pentagon study stated that the Navy was likely to be up to 40% short on expected funding toward their 375 ship goal, based on reasonably-expected funding profiles.

Even an 8-ship class certainly isn’t going to succeed in replacing 62 DDG-51 AEGIS destroyers – but something will have to do so beyond 2030, or the Navy’s planned force will start becoming ineffective at all levels, as the intended “high-low” mix fails on both ends. DID has already discussed the light armament profile being built into US Navy versions of the Littoral Combat Ship, and their corresponding and compounding lack of weapon flexibility. As Vice-Admiral Mustin (ret.) and Vice-Admiral Katz (ret.) put it in a 2003 USNI Proceedings article:

“Because the Navy has invested heavily in land-attack capabilities such as the Advanced Gun System and land-attack missiles in DD (X), there is no requirement for [the Littoral Combat Ship] to have this capability. Similarly, LCS does not require an antiair capability beyond self-defense because DD (X) and CG (X) will provide area air defense. Thus, if either DD (X) or CG (X) does not occur in the numbers required and on time, the Navy will face two options: leave LCS as is, and accept the risk inherent in employment of this ship in a threat environment beyond what it can handle (which is what it did with the FFG-7); or “grow” LCS to give it the necessary capabilities that originally were intended to reside off board in DD (X) and CG (X). Neither option is acceptable.”

And yet, here we are in 2012, facing their worst case scenario as our current and future reality.

SSN-21: shared fate?

The SSN-21 Seawolf Class remain the best fast attack submarines in the world, with capabilities – and costs – that no other sub can match. That cost eventually led to program cancellation after 3 boats, and replacement by an SSN-774 Virginia Class that integrated many of their key technologies and design approaches at only 60-70% of Seawolf’s cost. In effect, the Seawolf Class became a set of 3 technology demonstrators.

If the Zumwalt Class cannot overcome these controversies with cost-effective performance, DID warned that it could end up sharing Seawolf’s fate. With the 2008 suspension of construction at 2-3 ships, that appears to be exactly what has happened. Even so, spiraling cost growth for the planned DDG-51 Flight III may yet get the Zumwalt Class back into contention as part of the US Navy’s future. If, and only if, the DDG-1000 program can demonstrate promised build and operational costs.

Zumwalt Class: Contracts and Key Events DDG-1000 vs. DDG-51/2A
(click to view full)

Contracts for the Zumwalt’s AGS/LRLAP long-range naval gun system, and Dual-Band Radar, are each covered in separate in-depth articles. While both systems are integral to the Zumwalt Class, they’re also present, or have the potential to be retrofitted, in other ship types.

Note that frequent references to “Mission Systems Equipment” can cover a wide range of items: Dual Band Radar, external communications suite, Total Ship Computing Environment set, MK 57 Vertical Launching System, AN/SQQ-90 Integrated Undersea Warfare Combat System, Electro-Optical/Infrared suite, IFF (Identification Friend or Foe) integrated sensor suite; and the Zumwalt ship control hardware, including an integrated bridge, navigation, EO surveillance, and engineering control system components.

Unless otherwise noted, contracts are issued by the USA’s Naval Sea Systems Command in Washington, DC.

FY 2014 – 2015

Zumwalt christened; Why the switch from 57mm to 30mm guns?; Final composite deckhouse delivered. Float-out
(click to view full)

Oct 12/14: Weapons. The US Navy has removed BAE’s Mk.110 57mm naval gun from their DDG-1000 Zumwalt Class ships, but it wasn’t clear why (q.v. Aug 5/14). Current revelations now say that the 30mm Mk.46 RWS did better against key target types like small boats than the Mk.110 or notional 76mm guns. That’s more than slightly surprising to some observers, who note that a 30mm cannon’s lethal range is about 1 mile rather than 4-6 miles – but the Navy is saying that they were equally surprised. Program Manager Capt. Jim Downey:

“They were significantly over-modeled on the lethality…. The results of the actual live test-fire data was that the round was not as effective as modeled…. it gets into the range of the threat – the approach of the threat, what the make-up of the threat is and how it would maneuver, how it would fire against our ship. There is a whole series of parameters that are very specific on what the threat is and how you take it out through a layer of defenses…. not what we expected to see.”

Downey categorically denies that the Mk.110’s 10+ ton weight difference was an issue, but doesn’t mention cost. Interestingly, his program’s test findings haven’t been shared with other NAVSEA entities like PEO LCS, let alone the Coast Guard who uses the gun on some cutters. The Navy is working on creating those mechanisms, but they don’t exist yet. Defense News, “Experts Question US Navy’s Decision To Swap Out DDG 1000’s Secondary Gun”.

Oct 2/14: Support. Raytheon Integrated Defense Systems in Tewksbury, MA receives a $6.5 million contract modification for FY 2015 Zumwalt class services engineering efforts, supporting their Mission Systems Equipment (MSE). Raytheon is already the contractor lead for class MSE, and the support contract involves MSE design and analysis, engineering and life cycle supportability, architecture and design studies, concept of operations, crewing, mission and requirements analyses, interoperability, mission support services, and test & evaluation.

Work will be performed in Portsmouth, Rhode Island (48%), Tewksbury, MA (26%), and Sudbury, MA (26%), and is expected to be complete by September 2015. US Navy Naval Sea Systems Command in Washington, DC manages the contract (N00024-10-C-5126).

Aug 7/14: DDG 1001. HII announces that they’ve delivered DDG 1001’s composite deckhouse. Ingalls built and delivered the composite deckhouse and hangar for DDGs 1000 and 1001 at the company’s Composite Center of Excellence in Gulfport, MS, but this will be the last one (q.v. Sept 4/13, Aug 2/13).

The deckhouse will be placed on a barge and shipped to General Dynamics Bath Iron Works in Maine, to be integrated onto the steel hull of DDG 1001. Sources: HII, “Ingalls Shipbuilding Delivers Composite Deckhouse for Michael Monsoor (DDG 1001)”.

Aug 5/14: Weapons. The US Navy discusses the switch away from Mk.110 57mm secondary guns and their tri-mode ammunition, to much smaller Mk.46 30mm guns.

“The results of the analysis for alternative systems to the Mk 110 CIGS [through 2010] were not conclusive enough to recommend a shift in plan.,” but a 2012 review “concluded that the MK46 was more effective than the MK110 CIGS…. In addition to the increased capability, the change from MK110 to Mk 46 resulted in reduction in weight and significant cost avoidance, while still meeting requirements…”

The Mk.110 has a maximum range of about 9 nautical miles, with fuzing modes and rates of fire that can deal with boats, helicopters, or even incoming missiles. Its 30mm replacement has a maximum range of around 2 miles, a lower rate of fire, and lacks the 57mm shell’s fuzing options. It seems to be a puzzling choice, unless it’s simply a weight shift or a sacrifice to shave a small amount off of ship costs. Sources: USNI, “Navy Swaps Out Anti-Swarm Boat Guns on DDG-1000s”.

Cost changes
(click to view full)

May 21/14: CRS Report. The Congressional Research Service talks about the Zumwalt and DDG-51 Flight III programs. This bit about the Zumwalts’ cost history is useful:

“Some of the cost growth in the earlier years in the table was caused by the truncation of the DDG- 1000 program from seven ships to three, which caused some class-wide procurement-rated costs…. a series of incremental, year-by-year movements away from an earlier Navy cost estimate for the program, and toward a higher estimate developed by Cost Assessment and Program Evaluation (CAPE) office within the Office of the Secretary of Defense (OSD). As one consequence of a [2010] Nunn-McCurdy cost breach… the Navy was directed to fund the DDG-1000 program to CAPE’s higher cost estimate for the period FY2011-FY2015, and to the Navy’s cost estimate for FY2016 and beyond. The Navy states that it has been implementing this directive in a year-by-year fashion with each budget submission since 2010, moving incrementally closer each year to CAPE’s higher estimate. The Navy states that even with the cost growth shown in the table, the DDG-1000 program as of the FY2015 budget submission is still about 3% below the program’s rebaselined starting point…”

Sources: CRS, “Navy DDG-51 and DDG-1000 Destroyer Programs: Background and Issues for Congress” update (April 8 and June 25) | USNI, “Two Billion Dollar DDG-1000 Cost Growth Explained”.


April 12/14: DDG 1000. USS Zumwalt is christened, commander by… Captain James Kirk. Not a joke.

Formal delivery is expected in September 2014. Sources: Pentagon, “Navy to Christen future USS Zumwalt, New Class of Destroyer” | Inquisitr, “USS Zumwalt Destroyer To Have Captain James Kirk At The Helm [Video]”

Zumwalt christened

March 4-11/14: FY15 Budget. The US military slowly files its budget documents, detailing planned spending from FY 2014 – 2019. A subsequent CRS report offers a full breakdown:

“The Navy estimates the combined procurement cost of the two DDG-51s requested for procurement in FY2015 at $2,969.4 million, or an average of $1,484.7 million each. The two ships have received a total of $297.9 million in prior-year advance procurement (AP) funding. The Navy’s proposed FY2015 budget requests the remaining $2,671.4 million to complete the two ships’ combined procurement cost.”

Sources: USN, PB15 Press Briefing [PDF] | CRS, “Navy DDG-51 and DDG-1000 Destroyer Programs: Background and Issues for Congress” update (April 8 and June 25).

Oct 28/13: Float-out. General Dynamics Bath Iron Works successfully launches the DDG 1000 Zumwalt from a floating dry dock, then moors it to a pier on the Kennebec River for final fitting-out.

Construction began in February 2009, and Bath Iron Works will deliver the completed ship in late 2014. Navy tests and trials will follow, and the current schedule would achieve Initial Operating Capability in 2016. Sources: USN, “First Zumwalt Class Destroyer Launched”.

Oct 22/13: MSE. Raytheon Integrated Defense Systems in Tewksbury, MA received a $58 million fixed-price incentive, cost-plus-fixed-fee contract modification for deferred mission systems equipment. The purpose of this modification is to complete the remaining MSE for DDG 1000 and DDG 1001, buy the remaining long-lead mission systems equipment for DDG 1002, and do one-time engineering related to mission system equipment design and development.

DDG 1002 will get”non-hatchable” Mission Systems Equipment. This involves items that are too large to be installed after the ship is built, as they can’t fit through the ship’s hatches. DDG 1002 Lyndon Johnson’s Mk57 VLS, AN/SQQ-90 sonar, etc. all fall into this category. Deferred MSE items for Zumwalt and Michael Monsoor include the MK57 VLS Launcher’s electronics and mechanical kits, below-deck radio terminals for external communications, and dry-end portions of the sonar suite.

Work will be performed in Portsmouth, RI (56%), Dallastown, PA (24%); Minneapolis, MN (16%), and Moorestown, NJ (4%), and is expected to be complete by April 2017.

Oct 11/13: Christening of USS Zumwalt (DDG 1000), originally scheduled for Oct 19/13, is postponed by the Navy because of the government shutdown.

FY 2013

DDG 1000 deckhouse delivered & fitted; Agile software development. Deckhouse erection
click for video

Sept 26/13: General Dynamics Bath Iron Works, Bath, Maine, is being awarded a $13.3 million contract modification for material and labor to complete work on the DDG 1000 deckhouse, which was provided by Northrop Grumman. $6.7 million in FY 2012 USN Shipbuilding and Conversion funds are committed immediately.

Work will be performed in Bath, Maine, and is expected to be complete by June 2014. The USN Supervisor of Shipbuilding, Conversion, and Repair in Bath, Maine (N00024-06-C-2303).

Sept 25/13: Sub-contractors. Huntington Ingalls Industries announces that they’ve delivered DDG 1001 Michael Monsoor’s 220 ton composite hangar. This follows the peripheral vertical launch system (PVLS) delivery in July 2013, and the deckhouse delivery expected in 1st quarter of 2014 will complete the company’s work on the DDG 1000 program. Sources: HII release, Sept 25/13.

Sept 4/13: Industrial. HII will be closing its Composite Center of Excellence in Gulfport, MS, once they’ve completed work on DDG 1001 Michael Monsoor’s deckhouse and the mast of LPD 27 Portland. That work is expected to finish in early 2014, with closure expected by May.

Total costs of the shut-down are expected to be about $59 million, with over 400 employees affected. Sources: HII, Sept 4/13 release.

Aug 11/13: Industrial. HII’s Composite Center of Excellence in Gulfport, MS is unsure of its future. Fabrication of masts for the LPD-17 San Antonio Class is ending, and the DDG 1002 deckhouse decision shortens their transition period. NAVSEA spokesman Chris Johnson gives $767 million as HII’s estimate for the value of their DDG 1000 & 1001 contracts, and they’ll still be contracted for the aft PVLS cells on DDG 1002, but they’ll need more than that.

Tim Colton suggests selling the center to their next-door neighbor Gulf Coast Shipyard Group, who is “building and repairing all types and sizes of naval and commercial boats, in steel, aluminum and composites, for markets that Ingalls has never had a chance of penetrating.” Sources: Virginian-Pilot, “Navy switch could hurt Ingalls Miss. composite center” | Time Colton’s Maritime Memos, “Curious Developments in Bath”.

Aug 3/13: Industrial. GD Bath Iron Works requests a tax break from Bath, Maine. They want to improve areas like their blast and pain facilities, and create a new 110-foot-high, 51,315-square-foot outfitting hall by 2015. Their submission is blunt about why they want the funds, citing a recent DDG-51 program award that saw them get 4 ships to HII’s 5, calling that “a strong message about where BIW stands relative to its competition.”

Tim Colton is even blunter:

“BIW is not expanding. It already has way more capacity than it needs…. new shop is designed to improve its productivity and, potentially, increase its throughput with minimal increase in employment…. BIW needs a second program [beyond the DDG-51s] for long-term security…. Its best bet is the LSD program and they probably regret now that they traded one third of the LPD 17 program for extra DDGs, after designing their land-level facility specifically for LPD construction. And then there’s the polar icebreaker program, which may be just their thing.”

Sources: Kennebec Journal, “BIW asks Bath for tax break to expand shipyard” | Time Colton’s Maritime Memos, “Curious Developments in Bath.”

Aug 2/13: DDG 1002. GD Bath Iron Works in Bath, ME receives a $212 million firm target fixed-price incentive to build a steel (not composite this time, q.v. March 28/13) deckhouse and hangar superstructure for DDG 1002 Lyndon B. Johnson, and supply the ship’s aft PVLS launchers. That leaves only DDG 1002’s mission systems contract to finish the order. All funds are committed immediately, using a combination of FY 2010 and FY 2013 shipbuilding dollars.

That steel deckhouse will be considerably heavier than its composite counterparts. Subsequent reports involving NAVSEA spokesman Chris Johnson indicate that the Navy thinks they have enough weight margin in the ship to do it.

Work will be performed in Bath, ME (80.5%), Corona, CA (4.1%), Coatesville, PA (2.6%), South Portland, ME (1.4%) and other various locations with less than 1% each (11.4%), and is expected to be complete by December 2016. This contract was a limited competition solicited via by US Naval Sea Systems Command in Washington, DC (N00024-11-C-2306). Sources: Pentagon | BIW Aug 5/13 release | Virginian Pilot, “Navy switch could hurt Ingalls Miss. composite center”.

DDG 1002 will have a steel deckhouse

July 24/13: DDG 1001. HII announces that they’ve delivered DDG 1001 Michael Monsoor’s final aft PVLS assemblies to the US Navy a week early. They’ll go to GD Bath Iron Works, who is building the hull and performing final assembly.

HII manufactures the composite superstructure for DDG 1000 and 1001 at the company’s composite center of excellence in Gulfport, MS, and makes all of the ship’s 4-cell PVLS launchers in Pascagoula, MS. DDG 1001’s first 2 PVLS units were delivered in July 2012, and the rest of the work is expected to be complete in the Q1 2014. HII.

May 23/13: DDG 1001 Keel Laying. Formal keel-laying, which is actually the 4,400 ton, heavily outfitted mid-forebody section of the ship. The ship is named for Michael Monsoor, a Navy SEAL whose Medal of Honor information is an appropriate Memorial Day reminder. GD BIW [PDF].

March 28/13: GAO Report. The US GAO tables its “Assessments of Selected Weapon Programs“. Which is actually a review for 2012, plus time to compile and publish. As of December 2012, the first 2 ships were 80% and 48% complete, with all contracts awarded. TSCE Release 6 software has begun integration and testing, and the follow-on release that would activate the mission systems is under contract.

Even at this late stage, issues remain. Most critical technologies won’t be fully mature and demonstrated in a realistic environment until after they’re installed in DDG 1000. One such technology, the GPS-guided LRLAP long-range shell, recently had its rocket motor redesigned and tested.

DDG 1002 began fabrication in April 2012, with pending contracts for the deckhouse, hangar, aft peripheral vertical launching system, and mission systems equipment. The Navy is considering a downgrade of the deckhouse to save money. Composite materials are better for stealth, but steel is cheaper, and both shipyards report that it’s a feasible alternative.

March 19/13: Support. General Dynamics Bath Iron Works, Bath, Maine receives an $18 million contract modification, exercising an option for DDG 1000 class services. This modification provides technical and industrial engineering in the interpretation and application of the detail design to construction of DDG 1000 class ships.

They seem to need quite a few contracts for this.

Work will be performed in Bath, ME, and is expected to be complete by September 2013. FY 2013 Shipbuilding and Conversion funding is being used, and all funds are committed (N00024-06-C-2303).

Dec 28/12: MSE. Raytheon Integrated Defense Systems in Tewksbury, MA received a not-to-exceed $169 million fixed-price incentive, cost-plus-fixed-fee contract modification for deferred mission systems equipment for DDG 1000 and DDG 1001, scheduled critical DDG 1002 non-hatchable mission systems equipment, and non-recurring engineering applicable to mission system equipment design and development.

Discussion with Raytheon clarified that “non-hatchable” Mission Systems Equipment is too large to be installed after the ship is built, as it can’t fit through the ship’s hatches. DDG 1002 Lyndon Johnson’s Mk57 VLS, AN/SQQ-90 sonar, etc. all fall into this category. Deferred MSE items for Zumwalt and Michael Monsoor include the MK57 VLS Launcher’s electronics and mechanical kits, below-deck radio terminals for external communications, and dry-end portions of the sonar suite.

Work will be performed in Moorestown, NJ (37%); Largo, FL (14%); Marlborough, MA (14%); Portsmouth, RI (13.2%); Cordova, AL (10%); Andover, MA (7%); Tewksbury, MA (2%); Sudbury, MA (1.5%); San Diego, CA (1%), and Aberdeen, MD (0.3%), and is expected to be complete by May 2018. $117 million is committed immediately (N00024-10-C-5126). See also Raytheon.

Dec 14/12: DDG 1000. The future USS Zumwalt has its deckhouse superstructure attached to the ship’s hull. “General Dynamics Bath Iron Works Completes Historic DDG 1000 Deckhouse Module Erection” describes the 900-ton static lift in detail: it involves 4 cranes, lifting a 900-ton, 155 x 60 x 60 foot deckhouse about 100 feet in the air, and moving the 610-foot hull beneath the suspended module using the shipyard’s electro-hydraulic ship transfer system. Total tonnage involved was over 13,000 tons.

With the successful lift and integration of the deckhouse, 9 of 9 ultrablock units are now on land level at Bath Iron Works. Construction is now 80% complete, with ship launch and christening planned for 2013. Construction on DDG 1001 Michael Monsoor continues, with delivery planned in 2016. DDG 1002 Lyndon B. Johnson is expected to reach the Navy in 2018. US Navy | GD Bath Iron Works | Erection on video.

Nov 9/12: Support. Raytheon IDS in Tewksbury, MA received an $19 million contract modification for Zumwalt class services engineering efforts, including participation in the joint test team. Work will be performed in Portsmouth, RI (50%); Andover, MA (15%); Moorestown, NJ (10%); Sudbury, MA (10%); Tewksbury, MA (10%); and San Diego, CA (5%); and is expected to be complete by December 2014. US Naval Sea Systems Command, Washington, D.C., is the contracting activity (N00024-05-C-5346).

Nov 6/12: Agile software. Aviation Week quotes Bill Marcley, Raytheon’s DDG-1000 program manager and VP of Total Ship Mission Systems, who cites the firm’s use of agile software development processes for the ship’s voluminous software. Agile development methods have become common in high-tech industries, and are spreading, but they’re a very uncommon approach in the defense industry. They focus on delivering small bits of working and tested software in a series of short timelines, generally under a month each. The most common status quo alternative involves a series of months-long sequential or slightly overlapping “waterfall” stages of specification, development, testing, and fixes that each encompass the entire project.

Air and missile defense are current foci for Raytheon’s agile ‘stories,’ and a major software review is scheduled for December 2012. Meanwhile, the Navy is sitting in on the scrum teams’ weekly software status reviews, and monthly combat system reviews. One of agile’s benefits is a greater level of assurance and visibility into project progress. It will be interesting to see if this approach spreads within the firm, and the industry. Aviation Week | See also DID: “Sharpen Yourself: The Agile Software Development Trend

Oct 9/11: Deckhouse. HII’s Ingalls Shipbuilding division has delivered DDG 1000 Zumwalt’s 900-ton composite deckhouse to the U.S. Navy. The deckhouse contains the ship’s bridge, radars, antennas and intake/exhaust systems, and will be welded to DDG 1000 at the steel base plates that are bolted to the core composite structure. Ingalls has also delivered DDG 1000’s composite hangar and aft PVLS units, and has begun work on the composite components for DDG 1001. HII.

DDG 1000 deckhouse

Oct 1/12: HII in Pascagoula, MS receives an $11.6 million cost-plus-fixed-fee contract modification, exercising an option for FY 2013 class services for the Zumwalt Class.

Work will be performed in Pascagoula, MS (95%), and Gulfport, MS (5%), and is expected to be complete by July 2013 (N00024-06-C-2304).

FY 2012

DDG 1000 Zumwalt keel-laying; Could DDG-51 Flight III cost spirals reignite the DDG-1000s? Deckhouse build
(click to view full)

Sept 19/12: General Dynamics Bath Iron Works in Bath, ME receives a $38.9 million cost-plus-fixed-fee contract modification, exercising options for additional class and engineering services, involving “technical and industrial engineering in the interpretation and application of the detail design.” The firm describes this work as “manufacturing support services such as engineering, design, production control, accuracy control and information technology… [plus] program management, contract and financial management, procurement and configuration/data management.”

Work will be performed in Bath, ME, and is expected to be complete by October 2013 (N00024-11-C-2306). See also GD release.

Sept 5/12: General Dynamics Bath Iron Works in Bath, ME receives a $26 million cost-plus-fixed-fee contract modification, exercising options for additional class and engineering services involving “technical and industrial engineering in the interpretation and application of the detail design.” Work will be performed in Bath, ME, and is expected to be complete by March 2013 (N00024-11-C-2306).

A piece in the Bangor Daily News may offer a more revealing and candid explanation for these continued contracts, so late into the construction process:

Rep. Chellie Pingree echoed the senators’ statements and said the contract will ensure steady design work at BIW through March. “The contract will help keep workers on the job designing and building the DDG 1000 this winter,” she said. “It’s critical to keep up the employment levels at the yard.”

Aug 16/12: Huntington Ingalls Industries in Pascagoula, MS receives a $7.2 million contract modification for research, development, test, and technical services in support of DDG 1000 Zumwalt-class destroyer. DDG 1000 technical services include technology development, analytical modeling, qualification of materials, potential design/process improvements, and design excursions.

Work will be performed in Pascagoula, MS (80%), and Gulfport, MS (20%), and is expected to complete by September 2013 (N00024-06-C-2304).

June 26/12: Move it on over. Huntington Ingalls, Inc. in Pascagoula, MS receives a $9.3 million cost-plus-fixed-fee contract modification. It will pay for the fabrication of cradles, fixtures, and other equipment that are necessary to safely and securely transport their Zumwalt Class assemblies from HII in Pascagoula, MS, to Bath Iron Works in Bath, ME.

Work will be performed in Pascagoula, MS (95%), and Gulfport, MS (5%), and is expected to be complete by June 2014 (N00024-06-C-2304).

May 31/12: General Dynamics Bath Iron Works in Bath, ME receives a $17 million contract modification, exercising an option for “technical and industrial engineering in the interpretation and application of the detail design to support construction and the maintenance of the ship design.” Work will be performed in Bath, ME, and is expected to be complete by September 2012 (N00024-06-C-2303).

April 30/12: Huntington Ingalls Industries, Inc. in Pascagoula, MS receives a $11.5 million contract modification, exercising an option for FY 2012 class services in support of Zumwalt Class product fabrication, delivery, engineering, engineering support and integrated logistics support.

Work will be performed in Pascagoula, MS (95%), and Gulfport, MS (5%), and is expected to be complete by October 2012 (N00024-06-C-2304).

April 16/12: DDG 1002 named. Secretary of the Navy Ray Mabus announces that the last planned ship of class, DDG 1002, will be named after President Lyndon B. Johnson. Johnson was a naval officer in the Pacific theater during World War 2, so all 3 ships have been named after Navy personnel, but American ships named after Presidents have been American carriers. The lone exception had been Jimmy Carter, a submariner who had the 3rd and last SSN-21 Seawolf Class fast attack submarine named after him.

We can’t wait until the new ship visits Cam Ranh Bay. US Navy | US DoD.

April 16/12: Sonar. Raytheon announces delivery of DDG 1000 Zumwalt’s dual-frequency AN/SQQ-90 tactical sonar suite, completely assembled and integrated into its Electronic Modular Enclosure (EME). Both the dual-band hull sonar and the EME represent firsts for American naval ships, and the system can reportedly be operated by 1/3 the number of crew members required for the AN/SQQ-89 systems on current Arleigh Burke Class destroyers and Ticonderoga cruisers.

The AN/SQQ-90 includes the AN/SQS-60 hull-mounted mid-frequency sonar; the AN/SQS-61 hull-mounted high-frequency sonar; and the AN/SQR-20 multi-function towed array sonar and handling system. The EME takes a page from the TSCE, in that it efficiently packages the commercial off-the-shelf electronics that power the hull-mounted sonars with shock mitigation, electromagnetic interference protection, thermal conditioning, security and vibration isolation. The electronics to power and control the ship’s hull-mounted sonar arrive in a single, smaller package that’s fully integrated and tested, including the transmit/receive amplifiers, and associated processors that distribute signals and data to the ship’s command center.

April 2/12: General Dynamics Bath Iron Works in Bath, ME receives a $9.4 million contract modification, exercising an option for additional class services. Specifically, BIW will provide “technical and industrial engineering in the interpretation and application of the detail design to support construction and the maintenance of the ship design.”

Work will be performed in Bath, ME, and is expected to complete by May 2012 (N00024-06-C-2303).

March 2012: The Pentagon’s Developmental Test and Evaluation and Systems Engineering’s FY 2011 annual report offers an update on the class’ IPS and radar testing:

“The preparations and [land based] testing at the [all-electric Integrated Power Systems'] LBTS were exemplary and undoubtedly resulted in avoiding cost and delay… DDG 1000 program is executing to the current approved TEMP [testing program]. The TEMP is inadequate in that it lacks details of the [SYPY-3 Multi-function Radar's added Volume Search] T&E. Revision E, on schedule for submission for approval in FY 2012, will contain details of the MFR VS test program.”

March 30/12: GAO report. The US GAO tables its “Assessments of Selected Weapon Programs” for 2012. Lead ship delivery is expected in July 2014, with the class expected to be ready to deploy by July 2016. Expected cost per ship remains around $3.5 billion, where it has been for some time now. A number of technologies remain delayed, however, even though the Zumwalt Class has spent more than 3.5x its original R&D projections:

“Three of DDG 1000’s 12 critical technologies are currently mature and the integrated deckhouse will be delivered to the first ship for installation in fiscal year 2012. However, the remaining eight technologies will not be demonstrated in a realistic environment until after ship installation…

“According to program officials, [TSCE] software release 5 has been completed and was used in land-based testing in fiscal year 2011. The program has made changes to release 6, and has prioritized the software needed to support shipyard delivery over… activating the mission systems. This functionality was moved out of the releases and will be developed as part of a spiral… the gun system’s long-range land-attack projectile [LRLAP] has encountered delays, primarily due to problems with its rocket motor. The Navy plans to finalize and test the rocket motor design by March 2012… guided flight tests using older rocket motor designs… demonstrated that the projectile can meet its accuracy and range requirements… Shipbuilders have experienced several challenges in constructing the first and second ships, including issues with the manufacture and installation of certain composite materials.”

Jan 31/12: AGS. BAE Systems in Minneapolis, MN receives a maximum $52 million contract modification, exercising the option for DDG 1002’s Advanced Gun System (AGS). This seems to finalize the Oct 26/11 contract at $125 million.

Work will be performed in Louisville, KY (37%); Cordova, AL (30%); Minneapolis, MN (28%); and Burlington, VT (5%), and is expected to be complete by January 2018 (N00024-12-C-5311).

December 2011: Hand-over. The Pentagon’s Under Secretary of Defense for Acquisition, Technology, and Logistics (AT&L) delegates authority for future DDG 1000 acquisition decisions to the Navy. Source: GAO.

Dec 22/11: General Dynamics Bath Iron Works in Bath, ME receives a $17.6 million contract, exercising an option for DDG 1000 class services, esp. technical and industrial engineering in the interpretation and application of the detail design to support construction, and the maintenance of the ship design profile.

Work will be performed in Bath, ME, and is expected to be complete by April 2012. Contract funds will not expire at the end of the current fiscal year, on Sept 30/12 (N00024-06-C-2303).

Dec 16/11: TSCE order. Raytheon IDS in Tewksbury, MA receives a multi-year, not-to-exceed $254 million letter contract modification. They’ll deliver a set of DDG 1000 Total Ship Computing Environment software for the US Navy’s Self Defense Test Ship, and support post-delivery and post-shakedown work involving the former Spruance Class destroyer Paul F. Foster [DD 964, now SDTS]. They’ll also perform SPY-3 volume search software and firmware development, as their active X-band radar takes over those functions from Lockheed Martin’s active S-band SPY-4. The final set of exercised options and changes here involve general software maintenance in support of the DDG-1000 program.

Work will run until January 2016; $11 million will be provided upon contract award, and will expire at the end of the current fiscal year on Sept 30/12. Work will be performed in Tewksbury, MA (40%); Portsmouth, RI (24.8%); Marlborough, MA (12.7%); Fort Wayne, IN (10.3%); Sudbury, MA (5.8%); Dahlgren, VA (2.7%); Indianapolis, IN (2.3%); and San Diego, CA (1.4%). (N00024-10-C-5126). See also Raytheon’s release says that the DDG 1000 program employs more than 800 Raytheon employees, as well as by approximately 1,800 subcontractors and supplier partners in 43 states across the country.

Dec 2/11: 1002 lead-in. Huntington Ingalls, Inc. in Pascagoula, MS receives a $46.1 million contract modification to procure long lead time material and related support for DDG 1002. A copy of their recent release quotes DDG 1000 program manager Karrie Trauth, who calls the contract strategic to the firm because of the advanced composite shipbuilding capabilities it supports.

Work will be performed at the company’s Composite Center of Excellence in Gulfport/ Pascagoula, MS (28%); as well as Benicia, CA (24%); Burns Harbor, IN (10%); Corona, CA (9%); Monroe, CT (4%); Deerpark, TX (3%); Patterson, NJ (3%); and other various locations with less than 1% of the total (19%). Work is expected to complete by March 2012 (N00024-06-C-2304). See also MarineLog.

Nov 18/11: 1000 keel-laying. The Zumwalt’s Keel is formally laid, in the form of a 4,000 ton ultrablock (vid. Oct 22/11 entry). The physical change is a corollary of using modern block construction techniques. GD-BIW.

Nov 16/11: DDG-51 or Zumwalt? Jane’s Navy International is reporting that DDG-51 flight III destroyers with the new AMDR radar and hybrid propulsion drives could cost $3-4 billion each.

If that’s true, it’s about the same cost as a DDG-1000 ship, in return for less performance, more vulnerability, and less future upgrade space. AMDR isn’t a final design yet, so it’s still worthwhile to ask what it could cost to give the Flight IIIs’ radar and combat systems ballistic missile defense capabilities – R&D for the function doesn’t go away when it’s rolled into a separate program. If the Flight III cost estimate is true, it raises the question of why that would be a worthwhile use of funds, and re-opens the issue of whether continuing DDG-1000 production and upgrades might make more sense. DoD Buzz.

Nov 10/11: Raytheon Integrated Defense Systems in Tewksbury, MA receives a $20.7 million contract modification, exercising options for FY 2012’s DDG-1000 program engineering, production, and integration services. That doesn’t mean the whole ship, just Raytheon’s Mission Systems Integrator role. $5.4 million has already been committed, and the rest will follow if needed.

Work will be performed in Portsmouth, RI (25%); Tewksbury, MA (25%); Marlboro, MA (20%); Dulles, VA (20%); San Diego, CA (5%); and Alexandria, VA (5%), and is expected to be complete by November 2012. Contract funds will not expire at the end of the current fiscal year (N00024-10-C-5126).

Nov 7/11: Aviation Week:

“Enhanced ballistic missile defense (BMD) missions will stretch the future U.S. Navy destroyer force beyond its fleet limits as well as put even more pressure on the service’s already stressed funding accounts, according to an Aviation Week Intelligence Network (AWIN) analysis and a recent Congressional Research Service (CRS) report.”

Nov 1/11: General Dynamics Bath Iron Works in Bath, ME receives a $14.4 million contract modification, exercising options for DDG 1000 class services and class logistics services associated with detail design and construction. Logistics services include development of training curriculum, supply support documentation, maintenance analyses, and configuration status accounting. Work will be performed in Bath, ME, and is expected to be complete by November 2012 (N00024-06-C-2303).

Oct 31/11: Huntington Ingalls, Inc. in Pascagoula, MS received a $13 million cost-plus-fixed-fee contract modification, exercising FY 2012 Zumwalt destroyer class services. They’ll support fabrication, delivery, engineering, and engineering support. Ingalls is building the deckhouse, hangar and peripheral vertical launch systems for DDG 1000 and DDG 1001, with plans to build a third. The deckhouse for DDG 1000 is expected to be delivered in Q2 2012. As HII’s DDG 1000 program manager Karrie Trauth notes:

“This contract modification provides additional funding for the composite work we’re doing on the deckhouse for this shipbuilding program… This is a significant program for our composite shipbuilders in Gulfport, and this award ensures the valuable expertise and technological advancements in composites continue through the detail design and construction of these ships.”

Work will be performed in Pascagoula, MS (95%), and Gulfport, MS (5%), and is expected to be complete by April 2012 (N00024-06-C-2304).

Oct 26/11: AGS. An unfinalized $73 million fixed-price incentive-fee firm target contract action for the Advanced Gun System (AGS) for DDG 1002, the last planned Zumwalt Class ship. This contract includes options, which could bring its cumulative value to $168 million.

Work will be performed in Louisville, KY (40%), Minneapolis, MN (30%), and Cordova, AL (30%), and is expected to be complete by January 2018. This contract was not competitively procured (N00024-12-C-5311).

Oct 22/11: General Dynamics Bath Iron Works completes the largest and most complex ship module movement ever executed at the shipyard, as the move the mid-forebody section of Zumwalt 900 feet inside the Ultra Hall construction facility. The heavily outfitted module is about 180 feet long, over 60 feet high and weighs more than 4,000 tons. The next step will be to integrate it with 3 additional “ultra units” that comprise the ship’s unique wave-piercing hull form. GD-BIW [PDF]

FY 2011

DDG-1001 and 1002 contracts, at last; Program update, incl. TSCE delays. DDG 1000 Ultrablock
(click to view full)

Sept 30/11: Design. General Dynamics Bath Iron Works in Bath, ME receives a $13 million contract modification for additional class services associated with detail design and construction. It’s mostly industrial engineering in the interpretation and application of the detail design, to support construction, and ship design updates based on feedback. Work will be performed in Bath, ME, and is expected to be complete by September 2012 (N00024-06-C-2303).

Sept 29/11: Design. Exactly the same as the Sept 30/11 contract, but $22.5 million, under another agreement that appears to be the go-forward contract for DDG 1000 class services (N00024-11-C-2306).

Sept 25/11: Progress report. Defense News offers a progress report from program manager Capt. James Downey. Negotiations are now under way with major suppliers HII (composite superstructure, some hull), Raytheon (Radar, electronics, combat system), and BAE (gun, launchers) for DDG 1001 and 1002, and the Navy hopes to come in slightly under DDG 1000’s $3 billion or so overall cost. The whole program is said to be within current time and budget, but that’s not the same as original plans because there have been many revisions over the years.

Tests of the AIM all-electric power system, new AGS guns & LRLAP precision shells, and EMEs (electronic modular enclosures) have gone well, EMEs are already shipping, and re-work on delivered components is under 1%. DDG 1000 Zumwalt is expected to be 60% complete at its keel-laying on Nov 17/11, because of the ship’s modular block construction approach. At 4,000 tons, the forward midbody block alone is heavier than some frigates. The 1,000+ ton composite superstructure is more than 75% complete, and is expected to be barged from Mississippi to Maine in late spring 2012. DDG 1000 Zumwalt is scheduled for launch in July 2013, with initial delivery set for 2014, and completion of the combat system to follow in 2015.

That’s an odd sequence, and managing it effectively will require the Navy to take delivery without releasing the contractors from financial responsibility for fixes – something the Navy has not always been able to do. Part of the issue involves delays in the Total Ship Computing Environment, whose 6th software release will start testing in January 2012, with a combat system release to follow. Both must then be tested on a ship equipped with all of the systems they control, which doesn’t exist yet, and that takes more time. TSCE 6 is scheduled for final delivery from Raytheon in January 2013, but until the combat system gets the final go-ahead in 2015, the ship won’t really be operational, regardless of its official status. The good news, such as it is, is that this qualification is only a problem once – unless issues are discovered later in the ship’s career. DDG 1001 Michael Monsoor is currently about 25% complete, and scheduled for delivery in 2015, so delays to the combat system could affect both ships. DDG 1002 construction won’t really start until spring 2012.

Sept 15/11: 1001 & 1002 contract. General Dynamics Bath Iron Works in Bath, ME receives a $1.826 billion fixed-price-incentive contract to build DDG 1001 and DDG 1002, the 1st major Zumwalt Class contract since February 2008. This contract includes options which could raise its value to $2.002 billion. Work will be performed in Bath, ME (59.9%); Parsippany, NJ (3.5%); Coatesville, PA (3.2%); Falls Church, VA (2.6%); Pittsburgh, PA (1.3%); Augusta, ME (1.3%); and other various locations (28.2%), each having less than 1%. This contract was not competitively procured.

Discussions with GD BIW clarified this is the full shipbuilder’s contract for both ships, which includes remaining construction, integration of many expensive items like the radars, weapons, etc. which are bought separately by the government, and initial testing/ qualification work. The September 2001 contract builds on long-lead materials and initial fabrication that have been bought for both DDG 1001 and 1002, using funds from the February 2008 contract, and subsequent interim awards.

At present, DDG-1000 Zumwalt is over 50% complete, and is scheduled to be delivered in 2014. DDG 1001 Michael Monsoor is currently scheduled for delivery in December 2015, and DDG 1002 is scheduled for delivery in February 2018. (N00024-11-C-2306). See also GD BIW | Sen. Snowe [R-ME].

Aug 4/11: 1001 & 1002 lead-in. General Dynamics Bath Iron Works in Bath, ME receives a not-to-exceed $110.8 million contract modification for more long lead time construction on DDG 1001, long lead time material for DDG 1002, and engineering and production support services. It’s not the big production contract everyone is expecting, but it is the first large award in over 2 years, and a necessary precursor to the full production deal.

Work will be performed in Coatesville, PA (23.3%); Erie, PA (13%); Walpole, MA (12.9%); Parsippany, NJ (11.1%); Loanhead, Midlothian, United Kingdom (5.4%); Deer Park, TX (5.4%); Newton Square, PA (4.5%); Kingsford, MI (4.4%); Milwaukee, WI (2.8%); South Portland, ME (2.7%); and other various locations with less than 2% (14.5%). Work is expected to be complete by October 2011 (N00024-06-C-2303).

July 26/11: After a gap of more than 2 years since the last major contract for this ship class, the US Navy has reached an agreement with General Dynamics-Bath Iron Works for pricing, terms and conditions for DDGs 1001 and 1002. Final contract details are being worked out, and the multi-billion dollar award is expected before the end of FY 2011.

With agreement reached, a 2011 budget passed, and Northrop Grumman’s shipbuilding changes resolved, all elements are now in place for the next step. Once construction on the Zumwalts is finished, Bath Iron Works will continue building DDG-51 destroyers, but the deal that gave it all 3 Zumwalts means BIW is no longer the DDG-51’s lead yard. Sen. Susan Collins [R-ME] | Maine’s Morning Sentinel | Defense News | Portland Press Herald.

July 22/11: IPS. US Chief of Naval Operations (CNO) Adm. Gary Roughead observes a live test of the DDG 1000 Integrated Power System (IPS) at Naval Surface Warfare Center Carderock Division’s land-based Ship Systems Engineering Station (NSWCCD-SSES). The next IPS test, scheduled for early 2012, will integrate and test portions of the DDG 1000 Engineering Control System software with the IPS, to verify compatibility.

The US Navy’s July 28/11 release adds that DDG 1000 Zumwalt is more than 50% complete and scheduled to deliver in FY 2014, with an Initial Operating Capability in FY 2016. DDG 1001 Michael Monsoor is about 20% complete, as key contracts must be forthcoming before much more build work can proceed.

May 11/11: IPS. The U.S. Navy successfully tests DDG 1000’s Integrated Power System (IPS) at full power, at the Philadelphia Land Based Test Site. The test included 1 of 2 shipboard shaft lines, 1 main and 1 auxiliary gas turbine generator set, all 4 high voltage switchboards, 2 of 4 shipboard electrical zones of Integrated Fight Through Power (IFTP) conversion equipment, and 1 of 2 propulsion tandem advanced induction motors with their variable control drives.

The IPS for an all-electric ship like the Zumwalt generates all ship electric power, then distributes and converts it for all ship loads, including electric propulsion, combat systems and ship services. defpro.

May 17/11: 1001 lead-in. General Dynamics Bath Iron Works in Bath, ME receives a not-to-exceed $29.9 million contract modification for DDG 1001 long-lead-time materials, engineering and support services. Work will be performed in Bath, ME, and is expected to be complete by July 2011. (N00024-06-C-2303).

May 4/11: Design. General Dynamics Bath Iron Works in Bath, ME receives an $18.8 million cost-plus-fixed-fee contract modification for “technical and industrial engineering in the interpretation and application of the detailed design to support construction and the maintenance of a safe and operable ship design.”

Work will be performed in Bath, ME, and is expected to be complete by July 2011 (N00024-06-C-2303). Meanwhile, the pattern continues – a lot of minor, “keep ‘em working” contracts, without a major purchase contract (vid. Feb 15/11 entry).

March 30/11: TSCE. Raytheon Integrated Defense Systems in Tewksbury, MA receives a $7.6 million contract modification for class services engineering efforts involving their Total Ship Computing Environment.

Work will be performed in Portsmouth, RI (29%); Tewksbury, MA (26%); Sudbury, MA (26%); Moorestown, NJ (10%); Marlboro, MA (6%); Herndon, VA (1%); Houston, TX (1%); Leesburg, VA (0.5%); and Minneapolis, MN (0.5%). Work is expected to be complete by November 2011, but $5.1 will expire at the end of the current fiscal year, on Sept 30/11 (N00024-10-C-5126).

March 21/11: Raytheon Integrated Defense Systems in Tewksbury, MA receives a $10.9 million contract modification, exercising an option for DDG-1000 class services engineering. Efforts include non-recurring engineering in support of mission systems equipment (MSE) system/design verification testing; 1st article factory test site preparation and plans; maintenance of MSE packaging, transportation, assembly, activation, and preservation documentation; maintenance of shipboard MSE installation and check-out plans; as well as the measurement, tracking, and reporting of MSE weight and power usage documentation to support the shipbuilders in meeting lead ship integration and construction schedules.

Work will be performed in Portsmouth, RI (50%); Andover, MA (15%); Moorestown, NJ (10%); Sudbury, MA (10%); Tewksbury, MA (10%); and San Diego, CA (5%), and is expected to be complete by December 2014 (N00024-05-C-5346).

March 18/11: General Dynamics Bath Iron Works in Bath, ME receives a not-to-exceed $28 million contract modification for long lead time material and engineering and support services for DDG 1001, the Michael Monsoor.

Work will be performed in Bath, ME (77.49%); Middletown, NY (7.8%); Stamford, CT (2.28%); Willimantic, CT (2.01%); South Portland, ME (1.69%); Windsor, CT (1.65%); York, PA (1.64%); and various other locations of less than 1.64% each (totaling 5.44%), and is expected to be complete by June 2011 (N00024-06-C-2303). See Feb 15/11 entry, re: efforts to avoid layoffs at Bath Iron Works.

March 10/11: CSC announces a Seaport-e task order from the U.S. Navy to provide engineering and program support for PMS-500, the DDG 1000’s program office. The task order has a 1-year base period and 4 one-year options, bringing the estimated total 5-year value to $110 million.

Under the terms of the task order, CSC will provide engineering and program management support for development, design, building, outfitting and testing, including program, business, financial and risk management; software and mission systems integration; hull, mechanical and electrical systems engineering; and naval architecture.

Feb 15/11: Don’t empty the Bath. The Portland Press-Herald reports that:

“The long-term details aren’t all worked out yet, but the Navy will send enough money to Bath Iron Works to avoid lay-offs at least through April while contracts are finalized for two more DDG-1000 destroyers. Rep. Chellie Pingree, D-1st, said she got that promise earlier today from Navy Secretary Ray Mabus.”

Perusal of this article will bear out the issue at hand. The last significant DDG 1000 program contract was Feb 15/08. At this point, DDG 1000 is mostly funded, and long-lead items for DDG 1001 are funded, but contracts do not exist yet to finish DDG 1001, and build DDG 1002. Bath Iron Works and the US Navy are reportedly still negotiating, and the current budgetary uncertainty can’t be helping.

Feb 14/11: FY 2012 request. The Pentagon issues its FY 2012 budget request, even as the disaster of the 111th Congress leaves the Navy uncertain of its FY 2011 funding, and forces it to make emergency maintenance cuts and other related measures.

For FY 2012, the Zumwalt Class program would receive $453.7 million. US Navy FY 2012 Budget: Shipbuilding & Conversion [PDF].

Feb 14/11: Raytheon Integrated Defense Systems in Tewksbury, MA receives a $7.9 million contract modification, exercising options for DDG-1000 program engineering, integration, and production services like test and evaluation, design solution, and integrated logistics support.

Work will be performed in Portsmouth, RI (65%), Dulles, VA (25%), Largo, FL (8%), Tewksbury, MA (1%) and Washington, DC (1%), and is expected to be complete by November 2011. $1,904,468 will expire at the end of the current fiscal year, on Sept 30/11 (N00024-10-C-5126).

Feb 7/11: Design. General Dynamics Bath Iron Works in Bath, ME receives a $6.7 million contract modification for detail design systems engineering services before the 1st ship’s Post Shakedown Availability. Work includes detail design excursions, shock qualification, production process prototype manufacturing, and life cycle support services. Work will be performed in Bath, ME and is expected to be complete by September 2011 (N00024-06-C-2303).

Jan 25/11: NAVDDX. Raytheon announces that the US Navy successfully tested their Next Generation Navigation System (NAVDDX). System development was a joint effort between Raytheon Integrated Defense Systems (IDS) and the U.S. Navy’s Space and Naval Warfare Systems Center Pacific in San Diego, CaA, through a private party sales agreement.

NAVDDX adheres to the TSCE standards of open architecture, and display of its product (navigation and high-precision time data) to any ship display on board. This makes it a potential add-on to other ships receiving TSCE-derived systems during overhauls, like the CVN-68 Nimitz Class carriers and LPD-17 San Antonio Class amphibious assault ships.

Jan 11/11: Control Systems. Northrop Grumman Corporation says that it has delivered Engineering Control System (ECS) Units for the first 2 Zumwalt ships to Raytheon IDS, nearly 6 months ahead of schedule and under budget. Each ship set involves 16 Distributed Control Units (DCUs) and 180 Remote Terminal Units (RTUs). The ECS takes in all of the destroyer’s hull, mechanical and electrical (HME) signals, which come from a wide variety of systems such as the fire detection systems and the integrated power plant. The RTU then distributes the signals to the DCU for analysis and control.

The company produced and assembled two shipsets of 16 DCUs and 180 RTUs each, for a total of 392 units. The July 2008 cost-plus-incentive-fee contract had a scheduled completion date of May 31/11. Production and assembly of the units were completed 23 weeks ahead of schedule, and inspection and sell-off tasks will be completed in the weeks to come. Northrop Grumman is also developing ensemble software for the DCUs, under a different contract.

Jan 7/10: Raytheon Integrated Defense Systems in Tewksbury, MA receives a $15 million contract modification, exercising an option for DDG 1000 class services engineering efforts to help test mission systems equipment, produce test documentation, conduct component and design level verification tests, and maintain related design and test class documentation.

Work will be performed in Portsmouth, RI (40%); Moorestown, NJ (26%); Sudbury, MA (12%); Tewksbury, MA (8%); San Diego, CA (6%); Marlborough, MA (3%); Minneapolis, MN (3%); and Largo, FL (2%), and is expected to be complete by September 2012 (N00024-05-C-5346).

Dec 29/10: Northrop Grumman Shipbuilding, Inc. in Pascagoula, MS receives a $12 million cost-plus-fixed fee contract modification to ship government-furnished equipment from Northrup Grumman Shipbuilding in Pascagoula, MS, to Bath Iron Works in Bath, ME. This includes material required for the fabrication of cradles, fixtures, and other necessary equipment that are necessary to safely and securely transport these products. Northrop Grumman is no longer a full shipbuilding partner to the program, but it still provides the ships’ composite-built superstructure.

Work will be performed in Pascagoula, MS (95%), and Gulfport, MS (5%), and is expected to be complete by December 2011 (N00024-06-C-2304).

Dec 22/10: 1002 IPS. Converteam, Inc. in Pittsburgh, PA receives a $21.8 million contract modification for DDG 1002’s Integrated Power System high voltage subsystem, including the baseline tactical advanced induction motor and its associated motor drive, and the main turbine generator and auxiliary turbine generator harmonic filters. Work will be performed in Pittsburgh, PA, and is expected to be complete by August 2012 (N00024-09-C-4203).

Nov 29/10: Northrop Grumman Shipbuilding, Inc. in Pascagoula, MS receives a $26.1 million cost-plus-fixed fee contract modification, exercising an option for FY 2011 class services in support of the DDG 1000 program. Services included product fabrication, delivery, engineering, and engineering support to integrated power system operations and the land-based test site; support for work to test and refine the ships’ radar cross section and other selected signatures; and integrated logistics support.

Work will be performed in Pascagoula, MS (95%), and Gulfport, MS (5%), and is expected to be complete by October 2011 (N00024-06-C-2304).

Nov 12/10: General Dynamics Bath Iron Works in Bath, ME receives an $8.5 million contract modification to provide additional systems engineering services associated with Zumwalt Class detail design and construction. Systems engineering efforts include detail design excursions, shock qualification, production process prototype manufacturing, and life-cycle support services before the initial ship’s Post Shakedown Availability.

Work will be performed in Bath, ME, and is expected to be complete by September 2011 (N00024-06-C-2303).

Nov 5/10: Raytheon Integrated Defense Systems, in Tewksbury, MA receives an $8.5 million contract modification, exercising options for Zumwalt Class engineering services. Work includes performing test and evaluation, design solution, shock qualification testing, training, and life time support class services for the parts of the ship that are Raytheon’s responsibility: TSCE, ship control systems, radar and combat system, PVLS launchers, etc.

Work will be performed in Dulles, VA (31.0%); Portsmouth, RI (19.7%); Moorestown, NJ (13.7%); San Diego, CA (11%); Sudbury, MA (6.6%); Bath, ME (5.5%); Philadelphia, PA (5.5%); Arlington, VA (5.5%); Tewksbury, MA (1.1%); and Washington, DC (0.4%). Work is expected to be complete by September 2011, and $3.8 million will expire at the end of the current fiscal year, On Sept 30/10.

Nov 1/10: TSCE. Raytheon Integrated Defense Systems in Tewksbury, MA receives a $10.3 million modification to a previously awarded contract, exercising “an option for the next phase of production design verification for the Zumwalt destroyer program.” A Raytheon representative helped translate this into English:

“Raytheon will be taking the first units of DDG 1000’s Total Ship Computing Environment, command and control systems, and ship control systems and performing extensive testing to ensure that they meet all of the ship’s design requirements. This includes integration testing of subsystems as they are combined into larger systems.”

Work will be performed in Tewksbury, MA (42.3%); Moorestown, NJ (36.6%); Portsmouth, RI (14.2%); Leesburg, VA (2.7%); Sudbury, MA (2.4%); San Diego, CA (1.1%); and Minneapolis, MN (0.7%). Work is expected to be complete by March 2012 (N00024-05-C-5346).

Oct 6/10: General Dynamics Bath Iron Works in Bath, ME received a $27.1 million cost-plus-fixed fee contract modification, exercising an option for additional class services. Specifically, they’re on contract for technical and industrial engineering in the interpretation and application of the Zumwalt Class’ detailed design.

Whether it’s done on computers or on blueprint paper, there’s always a place for engineering where design meets reality. Work will be performed in Bath, ME, and is expected to be complete by December 2010 (N00024-06-C-2303).

FY 2010

Still waiting for significant contracts; Cut to 3 ships; Numbers cut creates cost breach; Dual-Band Radar now just 1 band; GAO report; Long-lead for DDG 1001/1002; Pentagon Value Engineering Award. BIW builds a Section
(click to view full)

Sept 7/10: TSCE to TRL 6. A key Technology Readiness Assessment by the US Navy certifies that Raytheon’s Total Ship Computing Environment (TSCE) is now at Technology Readiness Level 6. That means that a a representative model or prototype of the system’s hardware and software code has been tested in a “relevant” environment that is similar to the actual platform.

Asked about this certification, Raytheon representatives said that the certification applied to TSCE R5, and progress on the final TSCE R6 version.

See also March 30/10 entry for more background on TSCE progress. As noted above, TSCE encompasses all shipboard computing applications, including the combat management system, command and control, communications, ship machinery control systems, damage control, embedded training, and support systems. Raytheon says that the review “revealed a high pass rate for system requirements as well as low software defect counts… commended the robustness of Raytheon’s simulation environment and the company’s thorough approach to integration and testing.” Raytheon.

Aug 11/10: MSE. Raytheon Integrated Defense Systems in Tewksbury, MA receives a $6 million modification to previously awarded contract (N00024-05-C-5346) for changes to the delivery requirements of Mission Systems Equipment (MSE) for the Zumwalt Class. These changes include additional storage space, and services and shipping fixtures that are required to support the revised DDG-1000 program ship production schedules and in-yard-need-dates at the production shipyards.

Work will be performed in Portsmouth, RI (88%); Tewksbury, MA (11%); Cordova, AL (0.5%); and North Kingstown, RI (0.5%). Work is expected to be complete by December 2013. US Naval Sea Systems Command in Washington, DC manages the contract.

Aug 11/10: MSE. Raytheon Integrated Defense Systems in Tewksbury, MaA receives a $36.1 million contract modification (N00024-05-C-5346) for mission systems equipment (MSE) that will be used on the US Navy’s Self Defense Test Ship, in support of the Anti-Air Warfare Self Defense Enterprise Test and Evaluation Master Plan. The equipment will support the DDG 1000 and CVN 78 classes of ships, in addition to follow-on operation test and evaluation efforts for the Evolved Sea Sparrow Missile (RIM-162 ESSM) and Surface Electronic Warfare Improvement Program (SEWIP).

Work will be performed in Andover, MA (58.7%); Portsmouth, RI (32%); Sudbury, MA (5.4%); Tewksbury, MA (2.7%); and San Diego, CA (1.2%). Work is expected to be completed by March 2013. US Naval Sea Systems Command in Washington, DC manages this contract.

Aug 5/10: Award. The U.S. Navy and members of the DDG 1000 industry team have been honored with a 2010 US Department of Defense Value Engineering Award. Their Surface Ship Affordability Initiative was created by the Navy’s DDG 1000 program office, who partnered with the US Office of Naval Research and industry to improve the efficiency of development, production and shipbuilding processes.

Using program funds, and monies from the USA’s Manufacturing Technology Program, $49 million was invested in 35 manufacturing technology projects during the past several years, with estimated total savings of $138 million. Raytheon.

Aug 2/10: Northrop Grumman Shipbuilding, Inc. in Pascagoula, MS receives a $17.2 million cost-plus-fixed-fee option for FY 2010 class product fabrication, delivery, engineering and engineering support services for the DDG-1000 Zumwalt Class. Work will be performed in Pascagoula, MS (95%), and Gulfport, MS (5%), and is expected to be complete by December 2010 (N00024-06-C-2304).

July 6/10: 1001 & 1002 lead-in. General Dynamics Bath Iron Works in Bath, ME receives a $105.3 million contract modification for long-lead time construction for DDG 1001; long-lead time materials for DDG 1002; and engineering and production support services.

Work is expected to be performed in Bath, Maine (52%); Parsippany, NJ (21%); Iron Mountain, MI (8%); York, PA (7%); Mississauga, Canada (6%); Vernon, CT (3%); and South Portland, Maine (3%). Work is expected to be complete by February 2011 (N00024-06-C-2303).

June 24/10: PVLS. General Dynamics Bath Iron Works in Bath, ME receives an $8.3 million contract modification to support the outfitting of DDG 1000 Peripheral Vertical Launch System (PVLS) units. As noted above, each PVLS compartment holds a MK57 Vertical Launching System, which are spaced around the ship edges to make targeting the “missile farm” impossible, while providing a buffer at the ship edges that helps protect the interior crew and equipment spaces from battle damage.

Work will be performed in Bath, ME (92%); Glendale, CA (6%); and Montville, NJ (2%); and is expected to be complete by December 2010 (N00024-06-C-2303).

June 15/10: IPS. Converteam, Inc. in Pittsburgh, PA receives a $9.9 million contract modification, covering long-lead materials for the DDG 1002’s Integrated Power System, including the baseline tactical Advanced Induction Motor and its associated VDM25000 motor drive, and the main turbine-generator and auxiliary turbine-generator harmonic filters.

Work will be performed in Pittsburgh, PA, and is expected to be complete by December 2011 (N00024-09-C-4203).

June 11/10: Rep. Barney Frank’s [D-MA-4] “Sustainable Defense Task Force” left wing/ libertarian coalition issues its report. They claim to identify $1 trillion in Pentagon budget cuts over the next decade, and the DDG-1000 is one of the programs recommended for complete cancellation, along with any new construction of DDG-51 destroyers. The move would effectively close Bath iron Works, and while the report identifies DDG-1000 cancellation as saving $1.6 billion in FY 2010, that budget is already committed. Procurement savings from FY 2011 onward would be minimal, with most of the savings coming from the difference (if any) between the cost to man and maintain the ships over the 10 years, plus any available refunds on contracts past 2011, minus contract cancellation penalties and ship disposal costs.

It should be noted that the participants do not represent a substantial faction within the American political system, but their recommendations could acquire more weight in the event of a US sovereign debt crisis. Full report [PDF].

June 2/10: DBR removed. As expected, the Pentagon this week certifies that the DDG-1000 destroyer program is vital to national security, and must not be terminated, despite R&D loaded per-ship cost increases that put it over Nunn-McCurdy’s legislated limit. There will be at least one important change, however: Lockheed Martin’s S-band SPY-4 Volume Search Radar will be deleted from the DDG-1000’s DBR.

Performance has met expectations, but cost increases reportedly forced the Navy into a cost/benefit decision. The Navy would not release numbers, but reports indicate possible savings of $100-200 million for each of the planned 3 ships. Raytheon’s X-band SPY-3 has reportedly exceeded technical expectations, and will receive upgrades to give it better volume search capability. The move will save weight and space by removing the SPY-4’s aperture, power, and cooling systems, and may create an opportunity for the SPY-3 to be upgraded for ballistic missile defense – or replaced by the winner of the BMD-capable AMDR dual-band radar competition.

The full DBR will be retained on the USS Gerald R. Ford [CVN 78] aircraft carrier, as Lockheed’s SPY-4 replaces 2 air search radars, and will be the primary air traffic control radar. No decision has been made for CVN 79 onward, however, and AMDR’s potential scalability may make it attractive there instead. Gannett’s Navy Times | US DoD | Maine’s Times Record | Associated Press | Reuters.

June 2/10: Sonar. Tods Defence Ltd. in Portland, UK announces that it has completed and shipped its 2nd composite bow sonar dome for the US Navy’s Zumwalt Class program to Bath Iron Works, in Maine. Tods’ composite domes have been used on other warships, but the firm says that this is the first time the US Navy has specified British designed bow sonar domes.

May 7/10: Design. A $26.8 million modification to a previously awarded contract (N00024-06-C-2303) to provide additional systems engineering services associated with the detail, design, and construction of the DDG 1000 Zumwalt Class destroyer. Systems engineering efforts include detail design excursions, shock qualification, production process prototype manufacturing, and life cycle support services prior to post shakedown availability.

General Dynamics Bath Iron Works in Bath, ME will perform the work and expects to complete it by December 2010.

April 19/10: 1001 lead-in. A $16 million contract modification for long lead time materials, construction, related support, and engineering and production support services associated with the construction of DDG 1001, the Michael Monsoor.

General Dynamics Bath Iron Works in Bath, Maine will perform and/or contract work in Coatesville, PA (41%), Burns Harbor, IN (41%), and South Portland, ME (18%). This funded effort is expected to be complete by July 2010 (N00024-06-C-2303).

April 19/10: A $9.8 million contract modification to support 2010 transportation of DDG-100 Class products to Bath, Maine, in order to meet critical construction milestones. This contract modification procures the labor and material required to fabricate cradles, fixtures, pedestals, etc., as required.

Northrop Grumman Shipbuilding, Inc. in Pascagoula, MS will perform and/or contract work in Pascagoula, MS, and Gulfport, MS, and this funded effort will be complete in December 2010 (N00024-06-C-2303). Northrop Grumman had been a partner in DDG 1000 Zumwalt Class construction, until a major reorganization gave Bath Iron Works all DDG-1000 Class work, while making Northrop Grumman the new lead yard for existing DDG-51 destroyers. Northrop Grumman will also continue to build the Zumwalt Class’ composite superstructures, under the new arrangements.

April 1/10: SAR & breach. The Pentagon releases its April 2010 Selected Acquisitions Report, covering major program changes up to December 2009. The DDG 1000 program features as a major Nunn-McCurdy breach, as a result of its reduction to 3 ships:

“The PAUC (Program Acquisition Unit Cost, incl. R&D) increased by 25.5% and APUC(Average Procurement Unit Cost, no R&D) increased 24.9% to the current and original Acquisition Program Baseline due to the truncation of the number of ships in the program. The original program baseline was for a ten-ship program. That quantity was reduced to seven ships in the fiscal 2009 President’s Budget. However, it did not impact unit costs enough to trigger a Nunn-McCurdy breach. The quantities were further reduced in the fiscal 2011 President’s Budget to the program’s current profile of three ships. Neither reduction was a result of poor program performance. However, the total quantity reduction from ten to three ships resulted in a Nunn-McCurdy breach.”

March 30/10: GAO. The US GAO audit office delivers its 8th annual “Defense Acquisitions: Assessments of Selected Weapon Programs report. With respect to the Zumwalt Class, the GAO reports that lead ship construction began in February 2009 and 68% of the units that make up DDG 1000 are now in fabrication. The Navy anticipates awarding construction contracts for DDG 1001 and DDG 1002 by June 2010. Beyond that, while the GAO acknowledges that “[p]ractical limitations prevent the Navy from fully demonstrating all technologies in a realistic environment prior to installation,” they are concerned that key systems will not be tested before ships are delivered. Those areas include:

Superstructure. GAO states that the Navy planned to fully demonstrate the integrated deckhouse prior to ship construction start in February 2009, but land-based testing was delayed. Testing is now scheduled to complete by March 2010 – over a year after deckhouse construction began. That means expensive rework, if problems are found.

Software. GAO reports that the Total Ship Computing Environment is behind, and will not be complete until after the lead ship’s systems are activated. While TSCE R5 resolved TSCE R4’s problems based on underway integration testing, the US DCMA(Defense Contract Management Agency) expects release 4 & 5’s problems to lead to “higher defect rates than planned” in the final TSCE R6, with additional cost and schedule delays. The Navy responds that The TSCE R5 includes “most” combat system features, and release 6 focuses on engineering control. They believe the software schedule has a margin available before it is needed for land-based and ship testing.

Power. GAO says that the integrated power system will not be tested with the control system until 2011 – nearly 3 years later than planned. In practical terms, that means after its installation on the first 2 of 3 ships. The Navy responds that the power system will be tested on land in 2011, using components of the final DDG 1002 ship, before DDG 1000 testing begins.

Radar. GAO acknowledges that the SPY-4 volume search radar has become more mature, and began testing with the main SPY-3 MFR in January 2009, but without the VSR’s radome and at a lower voltage. Under present schedules, the lead ship’s volume search radar “will be installed in April 2013 – after the Navy has taken custody of the ship.” The Navy does not dispute either of these notes, but says that prototype integration tests are not dependent on the voltage or radome. Full-voltage modules have been produced and tested, and the lead-ship radar will be tested in 2012 with a radome. The installation date is not contested.

Feb 19/10: TSCE. A $27.8 million not-to-exceed modification covers common display system (CDS) hardware and software integration with the DDG 1000’s Integrated Bridge Console and Distributed Control Workstation hardware, to ensure that these changes to the TSCE are incorporated by 2011.

Work will be performed in Portsmouth, RI (66.1%); Tewksbury, MA (22.9%); Moorestown, NJ (8.3%); the remaining 2.7% will be performed in San Diego, CA; Andover, MA; and Sudbury, MA. Work is expected to be complete by May 2012.

Feb 17/10: 1001 lead-in. General Dynamics Bath Iron Works in Bath, ME receives a $7.9 million contract modification for long lead time material (LLTM) associated with the construction of DDG 1001 Michael Monsoor. Materials already bought or manufactured for DDG 1001 under a previously contract awarded contract (N00024-06-C-2303) are expected to be transferred with its associated costs to the as-yet-to-be-negotiated DDG 1001 ship construction contract. This modification adds plate, shapes, and pipe to support a construction start in FY 2010.

Work is expected to be performed in Bath, ME (38%); Coatesville, PA (31%); and Burns Harbor, IN (31%). Work is expected to be complete by August 2010.

Feb 17/10: TSCE. Raytheon announces a successful Total Ship Computing Environment (TSCE) Release 6 software specifications review, which sets a final goal for its coders. Release 6 is meant to be the “Version 1.0″ release of mission-ready software for the Zumwalt Class, following years of iterative development. It will implement more than 25,000 software requirements over Release 5, and will raise the total number of delivered lines of software code for Zumwalt to more than 9 million. With this review, all of the Zumwalt software requirements are complete, and more than 80% of software coding is complete.

Raytheon performs software work for the Zumwalt program at a number of mission centers across the country, including IDS Headquarters in Tewksbury, MA; its Seapower Capability Center in Portsmouth, RI; the Surveillance and Sensors Center in Sudbury, MA; and the Expeditionary Warfare Center in San Diego, CA. TSCE infrastructure is also finding its way into upgrades for the USS Nimitz [CVN 68] and USS San Antonio [LPD 17].

Feb 4/10: Design. General Dynamics Bath Iron Works in Bath, Maine receives a $9 million modification to previously awarded contract (N00024-06-C-2303) to provide additional systems engineering services associated with the detail design and construction of the DDG 1000 Zumwalt Class destroyer.

Systems engineering efforts include detail design excursions, shock qualification, production process prototype manufacturing, and life cycle support services prior to post shakedown availability. Work will be performed in Bath, ME, and is expected to be complete by April 2010.

Feb 1/10: Down to 3 ships. The FY 2011 budget request removes the CG (X) and Future Surface Combatant programs. That shrinks the DDG-1000 program’s ship total back to 3, removing the legerdemain that had kept the program’s total cost per ship delivered from breaching legislative limits.

While per-ship construction costs have risen less than 25%, spreading the same R&D dollars over fewer ships results in a technical increase of 86.5%. Under Nunn-McCurdy legislation, that forces cancellation, unless Congress accepts the Pentagon’s submitted justification for continuing the program. With most of the Zumwalt Class shipbuilding funds already spent, and the program already set at just 3 ships, cancellation is very unlikely. See also Jan 26/09 and Feb 4/09 entries for more background. Reuters.

Jan 25/10: TSCE. Raytheon Integrated Defense Systems in Tewksbury, MA received an $11.2 million modification to a previously awarded contract (N00024-05-C-5346) for changes to software development efforts due to revised missile interface control documents and related power density implementation for the DDG 1000 Zumwalt Class destroyer program.

The purpose of this modification is to incorporate software changes that affect the combat system and Dual Band Radar, in light of MICDs Rev B+ and related power density implementation changes to the current TSCE requirements. Work will be performed in Tewksbury, MA, and is expected to be complete by March 2012.

Jan 6/10: General Dynamics Bath Iron Works in Bath, ME receives a $6.9 million modification to a previously awarded contract (N00024-06-C-2303), exercising an option for additional systems engineering and class logistics services associated with DDG-1000 detail design and construction. Work will be performed in Bath, ME, and is expected to be complete by November 2010.

Systems engineering efforts include detail design excursions, shock qualification, production process prototype manufacturing, and life cycle support services prior to post shakedown availability. Class logistics efforts provide for the continued development of integrated logistics support for the DDG 1000 class, including development of training curriculum, supply support documentation, maintenance analyses, and configuration status accounting.

Dec 16/09: IPS. Converteam, Inc. in Pittsburgh, PA received a $7 million modification to previously awarded contract for the DDG 1002 baseline tactical high voltage power distribution switchboard. They will be used at the US Navy’s land-based test site for the ship’s integrated power system. Work will be performed in Pittsburgh, PA, and is expected to be complete by July 2011 (N00024-09-C-4203).

Nov 25/09: Raytheon Integrated Defense Systems in Tewksbury, MA received an $84.4 million modification to a previously awarded contract (N00024-05-C-5346), exercising an option for FY 2010 Zumwalt Class services engineering efforts. Raytheon will help test mission systems equipment, produce test documentation, conduct component and design level verification tests and maintain related design and test class documentation.

Work will be performed in Portsmouth, RI (38.5%); Moorestown, NJ (19.3%); Marlborough, MA (16.6%); Sudbury, MA (12.6%); Tewksbury, MA (5.5%); Minneapolis, MN (3.5%); San Diego, CA (2.2%); and Towson, MD (1.8%); and is expected to be complete by Dec 31/13.

Nov 25/09: Design. Raytheon Integrated Defense Systems in Tewksbury, MA received a $46.6 million modification to previously awarded contract (N00024-05-C-5346), exercising an option for class services engineering to support design assurance, develop verification plans, and conduct tests for the DDG 1000 Zumwalt Class destroyer program. Hard to tell if this is TSCE or MSE.

Work will be performed in Tewksbury, MA (28.3%); Portsmouth, RI (27.1%); Falls Church, VA (12.8%); Sudbury, Mass. (11.9%); Minneapolis, MN (7.4%); Washington, DC (6.9%); Moorestown, NJ (3.7%); San Diego, CA (1.1%); and Marlborough, MA (0.8%); and is expected to be complete by December 2010. Hard to tell if this is TSCE or MSE.

Nov 13/09: Raytheon Integrated Defense Systems in Tewksbury, MA receives a $46.7 million modification to previously awarded contract (N00024-05-C-5346), exercising an option for “the next phase of verification of the production design for the DDG 1000…”

Work will be performed in Moorestown, NJ (48.2%), Tewksbury, MA (38.3%), Portsmouth, RI (7.8%), Sudbury, MA (4.3%), Minneapolis, MN (1.2%), and Marlborough, MA (0.2%), and is expected to be complete by December 2010.

Nov 12/09: TSCE. Raytheon Integrated Defense Systems in Tewksbury, MA receives a $241.3 million modification to previously awarded contract (N00024-05-C-5346) to complete the Total Ship Computing Environment software for the DDG 1000 Zumwalt Class Destroyer Program, and meet lead ship integration and construction schedules. There are 2 major components of the scope for this effort: re-planning of TSCE Release 6 software to align with the re-phasing in detail design and integration Revision F; plus additional Release 6 efforts, implementation of engineering control/damage control human computer interface for distributed contract work stations, Release 4 and 5 software maintenance, and implementation of required changes to support both land-based test site testing and ship activation software deliveries needed to maintain shipyard schedules. See also the March 31/09 entry for the US GAO’s overall report, which includes TSCE concerns.

Work will be performed in Tewksbury, MA (64.7%), Moorestown, NJ (27%), Indianapolis, IN (2.7%), Burlington, MA (1.5%). The remaining 4.1% will be performed at the following locations: Marlborough, MA; Falls Church, VA; King George, VA; Fort Wayne, IN; Aurora, CO; and Marlborough, MA. Work is expected to be complete by March 2012.

Oct 28/09: FY 2010 budget. President Obama signs the FY 2010 defense budget into law. That budget provides the full requested amount of $1,084.2 million to finish the 3rd ship, but the reconciled bill stripped out the $539.1 million in RDT&E funding the Pentagon had requested. White House | House-Senate Conference Report summary [PDF] & tables [PDF].

Oct 21/09: Design. General Dynamics Bath Iron Works Corp in Bath, ME received a $79.5 million modification to a previously awarded contract (N00024-06-C-2303). It exercises an option for additional class services associated with the detail design and construction of the DDG 1000 Zumwalt Class destroyer.

Bath Iron Works will provide technical and industrial engineering in the interpretation and application of the detailed design to support construction and the maintenance of a safe and operable ship design. Work will be performed in Bath, ME and is expected to be complete by November 2010.

FY 2009

GD-BIW handed the lead role; Fixing the books to avoid a breach; GAO points to tech-driven delays; Mission systems pass preliminary readiness review; Radar lightoff; SQQ-90 designated; DDG 1001 named Michael Monsoor; DDG-51 vs. Zumwalt; Still waiting for significant contracts; “I’d like to see how it goes…”. DDG-1000 concept
(click to view full)

Sept 10/09: MSE. Raytheon Integrated Defense Systems in Tewksbury, MA received a $22.5 million modification to previously awarded contract (N00024-05-C-5346) for continuing Mission Systems Equipment (MSE) software development and additional design verification for the Zumwalt Class Destroyer Program. Work will be performed in Moorestown, NJ (64%), Tewksbury MA (20%), Baltimore, MD (10%) and Dahlgren, VA (6%), and is expected to be complete by March 2012.

Timely software development has been flagged as a potential issue by recent GAO reports (q.v. March 31/09 entry).

Aug 19/09: Small business qualifier Temeku Technologies, Inc. in Herndon, VA received a $7.95 million firm-fixed-price contract for DDG 1000’s Flight Deck Lights (FDL) System, mounted on and near the flight deck and hangar face as next-generation visual landing aids for helicopters.

Work will be performed in Herndon, VA (60%); Bologna, Italy (30%); and Point Mugu, CA (10%) and is expected to be complete in April 2011. This contract was competitively procured via electronic request for proposal, with 3 offers received by the Naval Air Warfare Center Aircraft Division in Lakehurst, NJ (N68335-09-C-0425).

Aug 17/09: Progress report. Gannett’s Navy Times updates the current status of major DDG-1000 sub-systems in “DDG 1000 project quietly logs successes.”

In production: Ship hull, Northrop Grumman’s composite upper-level deckhouse; Raytheon’s Advanced Vertical Launch System; Integrated Power system including RR MT-30 engine; Automatic fire suppression system.

Finished development: Tumblehome hull form; BAE’s 155mm AGS gun, Lockheed Martin’s LRLAP GPS-guided long-range shell; Infrared suppression engine exhaust and heat suppression system, incl. 4 major at-sea tests; Crew multi-skill training plan.

Still in development: Dual-Band Radar (Raytheon’s X-band SPY-3 Multi-Function Radar, Lockheed Martin’s S-band SPY-4 Volume Search Radar), Raytheon’s Total Ship Computing Environment, 3-D CAD models.

The first 2 X-band SPY-3 arrays are being assembled, and “minor” manufacturing issues have been resolved, following completion of at-sea testing in Spring 2009. The DBR has also been installed at the Wallops Island test facility, where aircraft detection tests are ongoing and will continue into the fall. Below-deck components of the S-band SPY-4, are in full-rate production, and 6 arrays are under contract. Of the 3-D CAD models, 90 of 94 are completely released and locked down, and the remaining 4 are expected by September 2009.

July 23/09: AGS. LaBarge, Inc. announces a $6.1 million contract from BAE Systems to continue producing electronic assemblies for the Advanced Gun Systems that will be installed on both ordered Zumwalt Class destroyers. The Company expects this latest award will continue production on the AGS program at its Huntsville, Ark., facility through December 2009.

July 20/09: MSE. Raytheon Integrated Defense Systems in Tewksbury, MA received a $60 million cost-plus-incentive-fee modification to a previously awarded contract (N00024-05-C-5346), exercising an option for Mission System Equipment (MSE) Class Services for the Zumwalt Class Destroyer Program.

Work will be performed at Raytheon facilities (85%) in San Diego, CA; Marlboro, MA; Sudbury, MA; Tewksbury, MA; Towson, MD; and Portsmouth, RI; at Lockheed Martin facilities (12%) in Moorestown, NJ and Akron, OH; and at BAE’s facility in Minneapolis, MN (3%), and is expected to be complete by March 2013.

June 19/09: IPS. Converteam, Inc. in Pittsburgh, PA received a $23 million modification to a previously awarded contract (N00024-09-C-4203). They will provide a DDG 1000 Baseline Tactical High Voltage Power Subsystem (HVPS) for use in the Navy’s integrated power system land based test site. These components will meet the same specification established by the DDG 1000 shipyards for lead ship installation. Work will be performed in Pittsburgh, PA, and is expected to be complete by March 2011.

The HVPS distributes electrical power from the ship’s turbine-generators to the ship’s propulsion and electronic equipment. It includes an advanced induction motor, motor drive, harmonic filters and resistors for dynamic braking and neutral grounding.

May 4/09: Gannett’s Navy Times interviewed US Chief of Naval Operations Adm. Gary Roughead 3 times during March and April 2009, and publishes excerpts. With respect to the DDG-1000, Roughhead sees the new design as something they can only learn from if it’s deployed and used, and he’s especially interested in the real-world, full-scale performance of its radically different hull form. Beyond that:

“I’d like to see how it goes. And if it really is a breakthrough technology, can it be scaled up and can it be scaled down? Because if you start getting into nuclear power and bigger radars [for CG (X)], can the DDG hull form take it? My sense is, it can. But if it can’t and you have to scale up, does it scale?

…There’s no question we will employ those ships once they’re delivered. Deploy them and employ. I see them in the deployment rotation because, quite frankly, it will be important to operate those ships in different environments, get them up in the high latitudes. What happens when that hull form starts to ice up? What’s the effect of that? If people are talking about having to be up in the Arctic areas, it’s a good thing to know. How well are they sustained logistically at great distances? We’ve got to get them out. Get them deployed.”

April 23/09: DBR. Raytheon Integrated Defense Systems in Tewksbury, MA received a $217 million cost plus fixed fee modification to a previously awarded contract (N00024-05-C-5346) for 2 Volume Search Radars (VSR). Work will be performed in Moorestown, NJ (95%) and Sudbury, MA (5%), and is to be complete by March 2013.

These S-band naval radars will be used as part of the Dual-Band Radar (DBR) systems mounted on one of the new Zumwalt Class destroyers, and on the inaugural CVN-21 carrier USS Gerald R. Ford [CVN 78]. See “The US Navy’s Dual-Band Radars” for full coverage.

April 13/09: Builder Shift. Defense News reports details of the agreement between the US Navy and its 2 shipyards for major surface combatants.

The deal reportedly includes a provision for Northrop Grumman’s shipyard in Avondale, LA to continue building LPD-17 San Antonio Class amphibious transport docks. Unfortunately, that shipyard has displayed severe and consistent quality problems building the first 2 ships of class.

Under the agreement, the FY 2010 budget would fund the second half of the 3rd Zumwalt Class ship [DDG 1002], and the Arleigh Burke Class DDG 113, with full ballistic missile defense capabilities installed at the outset. That a departure, because all previous BMD ships in the US Navy have been refits of existing vessels. DDG 113 will be built by Northrop Grumman at Ingalls in Mississippi. That would be the first DDG-51 destroyer ordered since 2002, and it would be followed by orders for similar ships in FY 2011: DDG 114 (Northrop) and DDG 115 (Bath Iron Works).

April 7/09: DBR. Raytheon announces a successful initial “lightoff” test of the Dual Band Radar, which includes the X-band AN/SPY-3 Multi-Function Radar and S-band Volume Search Radar. Both radiated at high power during lightoff at the Navy’s Engineering Test Center in Wallops Island, VA. Following this successful lightoff test, the radar suite will begin an extended period of operational performance testing.

April 7/09: Rep. Gene Taylor [D-MS, Seapower subcommittee chair] announces that the Pentagon has reached agreements with General Dynamics’ Bath Iron Works in Maine, and with Northrop Grumman’s Ingalls Shipyard in Mississippi. Read “Bath, Ingalls Agree to Navy’s Surface Combatant Plans” for details of the arrangements.

April 6/09: US Secretary of Defense Robert M. Gates announces his recommendations for the FY 2010 defense budget:

“…in this request, we will include funds to complete the buy of two navy destroyers in FY10. These plans depend on being able to work out contracts to allow the Navy to efficiently build all three DDG-1000 class ships at Bath Iron Works in Maine and to smoothly restart the DDG-51 Aegis Destroyer program at Northrop Grumman’s Ingalls shipyard in Mississippi. Even if these arrangements work out, the DDG-1000 program would end with the third ship and the DDG-51 would continue to be built in both yards.

If our efforts with industry are unsuccessful, the department will likely build only a single prototype DDG-1000 at Bath and then review our options for restarting production of the DDG-51.”

April 1/09: The Mississippi Press reports that Raytheon Company is footing the bill for the recently created

“Spokeswoman Carolyn Beaudry initially denied Tuesday any corporate involvement in the Zumwalt campaign. She later called back to say that others within the company had since told her Raytheon is supporting “a lot of public efforts, including,” to provide third-party advocacy.”

This is not unusual for corporations or other organizations when lobbying government; indeed, a recent Washington Times article by USN Adm. James Lyons (ret.) lamented the retreat of America’s shipbuilding industry from its previous public advocacy role. Non-disclosure of such involvement is less customary, though the Times report could also describe a simple mistake that was quickly corrected. When the funding is meant to be covert, the technical term is an “astroturf” (artificial grassroots) campaign.

March 31/09: GAO. The US GAO audit office delivers its 7th annual “Defense Acquisitions: Assessments of Selected Weapon Programs report. It rates 4/12 critical technologies in the DDG-1000 program as fully mature (demonstrated in a sea environment), and 6/12 as approaching maturity, but 5 of the 6 will not demonstrate full maturity until after they’re installed on the ship. Lockheed Martin’s S-band volume search radar, and the Total Ship Computing Environment, are rated as immature. The report adds:

“Land-based tests of the volume search radar prototype originally planned for before ship construction will not be completed until June 2009 – over 2 years later. Software development for the total ship computing environment has proved challenging; the Navy certified the most recent software release before it met about half of its requirements…”

“The integrated power system will not be tested with the control system until 2011 – nearly 3 years later than planned. The Navy will buy a power system intended for the third ship and use it in land- based tests… Land-based tests of the volume search radar prototype will not be completed until June 2009 – over 2 years later than planned… The Navy will not demonstrate a fully capable radar at its required power output until testing of the first production unit in 2011… installation [of the volume search radar) will occur in April 2013 – after the Navy has taken custody of the ship. The Navy initially planned to develop and demonstrate all software functionality of the total ship computing environment (phased over six releases and one spiral) over 1 year before ship light-off… However, the contractor delivered release 4 without incorporating all software system requirements and deferred work to release 5, primarily due to issues with the command and control component. Problems discovered in this release, coupled with the deferred work, may be a sign of larger issues…”

March 17/09: ZumwaltFacts.Info publishes an “admirals’ letter to Secretary of Defense Robert M. Gates from USN Adm. Henry H. Mauz (ret.); USN Rear Adm. Philip A. Dur (ret.); and Phil Depoy, Director of the US Naval Postgraduate School’s Systems Engineering Institute. Zumwalt Facts is 3rd party site chaired by USMC Col. James G. Zumwalt, Esq. (ret.). Full letter [PDF].

March 6/09: MSE. Raytheon IDS in Tewksbury, MA received a $57 million cost-plus-incentive-fee modification to a previously awarded contract (N00024-05-C-5346). These funds will buy selected Zumwalt Class mission system equipment which will be checked out and integrated at Wallops Island, VA, for the program’s Test and Evaluation Master Plan (TEMP) aboard the US Navy Self Defense Test Ship (SDTS). The SDTS is a best described as a barge that can mount and use installed radars and weapons for tests. See also the related Dec 15/08 and Dec 5/08 awards.

Work will be performed in Tewksbury, MA (40%); Andover, MA (40%), Wallops Island, VA (10%) and Portsmouth, RI (10%), and is to be completed by March 2011. Contract funds in the amount of $27.5 million will expire at the end of the current fiscal year.

Feb 12/09: Northrop Grumman Ship Systems in Pascagoula, MS received a $9 million modification to a previously awarded contract for systems engineering, design and technical services. The contract will support the detail design and construction of the DDG 1000 Zumwalt Class Destroyers.

Northrop Grumman is currently expected to design and build DDG-1001, the Michael Monsoor. Work will be performed in Pascagoula, MS, and is expected to be completed by December 2009 (N00024-06-C-2304).

Feb 4/09: DDG-51 vs. Zumwalt. Rep. Gene Taylor [D-MS-4] chairs the US House Armed Services Committee’s Seapower and Expeditionary Forces subcommittee. He is a vocal critic of the US Navy’s current shipbuilding strategy, while remaining one of Congress’ strongest advocates for a larger shipbuilding budget and a larger Navy. His statement on the future of US Navy shipbuilding reiterates his support for more DDG-51 type destroyers, and says:

“For far too many years I have watched as the size of the Navy fleet has decreased… In particular, the failure of the [Littoral Combat Ship] program to deliver on the promise of an affordable, capable, and reconfigurable warship only puts the exclamation point on a Bush administration’s strategy that was neither well envisioned nor properly executed. As for the DDG 1000, we will not know the true cost of that program for a number of years but significant cost growth on that vessel will require diverting funding from other new construction projects to pay the over-run…”

Feb 4/09:The Navy’s New Battleship Budget Plan” at the naval policy discussion site Information Dissemination addresses the proposed DDG-1000 program approach in an op-ed:

“Of all the different ships in the Navy’s FY10 shipbuilding budget, there are actually only 3 mature ship designs [out of 11 ship types]… This reflects the inability of naval leadership to set requirements. This reflects a long standing policy where accountability has not been a priority. This reflects an industry without enough oversight. This reflects weak political leadership willing to ignore deception and deceit. Let me explain that last point.

…John Young was absolutely right to force the Navy to go through a requirements study process, but the rest of the memo should be raising serious questions in Congress. The very intent of the memo, which comes from the top acquisition official in the Department of Defense, is a signed specific instruction to the Navy to intentionally ‘pad’ the budget of the DDG-1000 program with money from a completely new program… in its first year of construction the DDG-1000 could now potentially go over budget by several hundred million dollars and still not trigger a breach of Nunn-McCurdy… With the leak of this memo, all of our Congressmen and Senators must now intentionally look the other way, with both eyes shut and index fingers jammed into their ears, and ignore that the top DoD financial officer is intentionally padding the books to circumvent the law.”

Feb 2/09: Raytheon announces that the first production equipment has been delivered for the U.S. Navy’s DDG 1000 Zumwalt Class destroyer – a Cooperative Engagement Capability (CEC) planar array antenna assembly.

Jan 26/09: Fixing the books. Pentagon undersecretary for acquisition, technology and logistics John Young’s “DDG 1000 Program Way Ahead” memo sets out alternatives for the program, and touches off controversy.

The reduction from 7 ships to 3 will spread the same R&D funds over fewer ships, raising their accounting cost per ship but not their actual purchase cost. So far, actual program costs and timelines remain on track, but under America’s Nunn-McCurdy procurement laws, the accounting cost change forces the Pentagon to meet 4 tests or cancel the program: (1) the weapon is essential for national security; (2) the new unit costs are reasonable; (3) management structure can control future growth; and (4) that no substitutes exist that provide equal or greater military capability at less cost.

Meeting tests 1 and 4 will be difficult, and the fact that the Navy has never really done a direct comparison of the DDG-1000 Zumwalt Class vs. the existing DDG-51 Arleigh Burke Class in key areas makes the problem worse (see Oct 12/08 “Heritage Foundation: Questions to Ask re: DDG-51 vs. DDG-1000” for more). Young’s memo offers the option of adding a “Future Surface Combatant” class to the DDG-1000 program, increasing the number of ships technically in the program without specifying what type they would be. It appears to be an effort to buy time for a year, while the Navy looks at the actual cost of fielding new-build DDG-51 ships with the radar modifications, software modifications, and power upgrades required to serve in a ballistic defense role. This, too, is something that is not currently known. Information Dissemination explains the accounting | Defense News re: FSC | Defense News: Young on DDG-1000 options and relative ship costs.

Jan 12/08: Defense News reports that a deal may be in the works to build both DDG-1000 Zumwalt and DDG-1001 Michael Monsoor, in exchange for having more of the Arleigh Burke Class destroyers that Congress is expected to ask for built at Northrop Grumman’s Ingalls shipyard in Pascagoula, MS. The Pascagoula shipyard was scheduled to begin fabrication of DDG 1001 in fall 2009.

The move would reportedly leverage Bath Iron Works’ investments toward DDG-1000 production, and keep Pascagoula more focused, given the diverse ship classes (DDG-51, LPD-17, LHD-8) it is already building in Mississippi.

Dec 22/08: Bloomberg News reports that an Oct 31/08 budget memo from Deputy Defense Secretary Gordon England approved shifting away as much as $940 million from the P-8A Poseidon maritime patrol aircraft program, in order to complete payment for the 3rd DDG-1000 destroyer that Congress partially funded in FY 2009. The Navy proposed getting 2 P-8A aircraft instead of 6 during the initial production phases.

Meanwhile, the US Navy faces significant challenges keeping the existing fleet of P-3C Orion maritime patrol aircraft in the air. Almost 1/4 of this aging fleet has been grounded due to safety concerns, and the Navy is forced to retire some aircraft every year. Even though they are in greater demand over key sea lanes, and in overland surveillance roles on the front lines. Early introduction of the P-8A has been touted as critical to maintaining these capabilities, without creating both near-term and long-term shortfalls.

The proposed FY 2010 ship plan also reportedly includes the purchase of 2 more DDG-51 Arleigh Burke Class destroyers.

Dec 15/08: MSE. Raytheon Integrated Defense Systems in Tewksbury, MA received $10.1 million modification to a previously awarded contract. They will furnish the test assets and infrastructure material required, in to support the integration, testing, and facilitation of DDG-1000 Mission Systems Equipment. See also Dec 5/08 entry for more background.

Work will be performed in Burlington, MA (75%) and Tewksbury, MA (25%), and is expected to be complete by September 2009 (N00024-05-C-5346).

Dec 9/08: SQQ-90 named. Raytheon announces that its integrated undersea warfare combat system for the Zumwalt Class has received its official U.S. Navy nomenclature: AN/SQQ-90.

The SQQ-90 includes the ship’s hull-mounted mid-frequency sonar (AN/SQS-60), the hull-mounted high-frequency sonar (AN/SQS-61), and the multi-function towed array sonar and handling system (AN/SQR-20). These systems are fully integrated with the MH-60R helicopter‘s combat system, and improved automation and information management allows the SQQ-90 to be operated by 1/3 the crew of current AN/SQQ-89v15 anti-submarine systems used on DDG-51 and CG-47 AEGIS destroyers and cruisers.

Dec 5/08: MSE. Raytheon Integrated Defense Systems in Tewksbury, MA received a $9 million modification to a previously awarded contract (N00024-05-C-5346) for one time engineering efforts. The purpose of this effort is to initiate the non-recurring engineering work required to make the selected Mission System Equipment (Dual Band Radar SPY-3 Array and REX; MK57 Vertical Launch System Electronics Module Controller Unit; Canister Electronic Units, and Total Ship Computing Environment) compatible with the Navy’s remote controlled Self Defense Test Ship (SDTS). The SDTS test will include the first missile firing with this advanced Mission System, against a difficult target set.

Raytheon will update selected Zumwalt Class Destroyer Mission Systems Equipment (MSE) for initial integration efforts at Wallops Island, VA, and follow-on installation on board the SDTS, in support of the Zumwalt TEMP (test and evaluation master plan). Work will be performed in Portsmouth RI (55%), Tewksbury, MA (25%), and Andover, MA (20%) and is expected to be complete by August 2009. All contract funds will expire at the end of the current fiscal year.

Dec 2/08: MSE. Raytheon announces a successful production readiness review of the mission systems equipment (MSE) for the DDG-1000 program. This comprehensive review was the culmination of more than 90 separate design and production reviews, and afterward the Zumwalt program completed a total ship system production readiness review – the final formal review before ship construction begins.

The Zumwalt Class MSE includes the following major subsystems: the Total Ship Computing Environment; Dual Band Radar; the external communications suite; MK 57 Vertical Launching System; AN/SQQ-90 Integrated Undersea Warfare Combat System; the Electro-Optical/Infrared suite; the Identification Friend or Foe integrated sensor suite; and the Zumwalt ship control hardware, including an integrated bridge, navigation, EO surveillance, and engineering control system components.

Dec 1/08: Design. General Dynamics Bath Iron Works Corp in Bath, Maine received a $45.8 million modification to a previously awarded contract (N00024-06-C-2303). It exercises an option for services associated with the detail design and construction of the DDG 1000 Zumwalt Class Destroyer, and modifies the contract issued on the Feb 15/08 for the first ship of class.

Work will include configuration management and maintenance of class design products; program management; configuration and data management; system and ship integration services; production engineering services; and ship system segment management. Work will be performed in Bath, ME, and is expected to be complete by November 2010. See also GD release.

Oct 29/08: 1001 named. At a Navy SEAL Warrior Fund Benefit Gala at the Waldorf-Astoria Hotel in New York City, Secretary of the Navy Donald C. Winter announced that DDG-1001 will be named USS Michael Monsoor after the Congressional Medal of Honor winner.

Petty Officer 2nd Class Michael Monsoor was a Navy SEAL who was posthumously awarded the Medal of Honor for his heroic actions in Ramadi, Iraq on Sept 29/06. Monsoor was asthmatic as a child, but his determination led him to conquer his condition and pass SEAL training. The 25 year-old machine gunner was providing security at a sniper lookout post with SEAL Team 3, when a fragmentation grenade hit his chest and bounced to the floor. Monsoor was near the only exit, and was the only one who could have escaped. Instead, he threw himself on the grenade before it exploded, and died half an hour later. Though some of his SEAL brethren and their Iraqi allies were wounded, all survived because of his sacrifice. USN release | USN coverage of award ceremony | Official USN Medal of Honor page for Michael Monsoor.

Oct 7/08: DDG-51 or Zumwalt? The right-wing Heritage Foundation publishes its in-depth paper concerning the DDG-1000 vs. DDG-51 debate: “Changing Course on Navy Shipbuilding: Questions Congress Should Ask Before Funding.”

The report can be characterized as leaning toward further DDG-1000 ships, but it offers key questions to ask rather than recommendations. This is more than just a rhetorical device. The answers to those questions could tip the debate either way, and the report points to discrepancies between recent and past Navy statements that need clarification. It also offers research evidence that disputes some recent statements, with an especial focus on the Zumwalt Class’ air defense and anti-submarine capabilities.

FY 2008

DDG 1000/1001 contract; Dead at 2? Asking to build a 3rd; Official SAR drops from 10 to 7 ships; EO/IR suite; Air & missile defense controversy; Deckhouse problems? TSCE release 5; MK 57 PVLS wins system engineering award; DDG-51 vs. Zumwalt. Zumwalt model

Sept 24/08: The House and Senate Armed Services Committees have reconciled their versions of the FY 2009 defense budget. The reconciled budget provides $2.5 billion for the 3rd Zumwalt Class ship, “without prejudice to any potential future Department of Defense decision to truncate the DDG-1000 class acquisition program in favor of a return to DDG-51 class destroyers.”

House Seapower subcommittee chair Gene Taylor [D-MS] continues to doubt the Navy’s ability to build DDG-1002 for $2.5 billion, a sum that is about half the amount predicted in some CBO reports. He cites the language noted above as a satisfactory compromise, because it allows the Secretary of the Navy to divert the $2.5 billion into more Arleigh Burke Class destroyers if problems continue. MarineLog | Gannett’s Navy Times.

Sept 22/08: Deckhouse problems? Defense News caries a story offering Northrop Grumman’s replies to its own Sept 15/08 publication, which quoted inside sources alleging concerns inside Northrop and the US Navy regarding construction problems involving the ship’s composite superstructure, or deckhouse. The Zumwalt Class uses composites rather than metal, because it improves radar stealth. All composite superstructures will be made by Northrop Grumman in its Gulfport, MS facility, even the structures that will fit on top of ships built by General Dynamics’ Bath Iron Works.

While Defense News’ unnamed sources stand by their assertions, Northrop Grumman replied that the deckhouse design meets all technical and load requirements, that the Navy remains closely involved in all aspects of the process, that over 6,000 test articles fabricated from 2001 onward have surfaced and addressed the risks. Fabrication was supposed to begin in Q4 2008, but Northrop Grumman says they are on track to start fabrication in February 2009.

Sept 17/08: The US Senate passed its FY 2009 defense budget proposal by a vote of 88-8. The bill includes $2.6 billion for a 3rd DDG-1000 destroyer. In contrast, the House bill allocates no funding at all for a 3rd ship. Brunswick Times Record report.

That difference will have to be settled in “reconciliation” conferences, in order to produce a final FY 2009 defense bill. Will the House give up on some of its priorities, or will the Senate have to drop this item?

Aug 31/08: Capabilities controversy. The Los Angeles Times interviews CNO Adm. Gary Roughead, and includes the following quotes in its report:

“I started looking at the DDG-1000. It has a lot of technology, but it cannot perform broader, integrated air and missile defense… Submarines can get very close [due to design compromises], and it does not have the ability to take on that threat… And I look at the world and I see proliferation of missiles, I see proliferation of submarines. And that is what we have to deal with.”

With respect to a 3rd destroyer, the LA Times report writes:

“But he was less enthusiastic about building a third ship. The Navy agreed to the additional vessel because money was already in the current budget proposal, he said. “It will be another ship with which to demonstrate the technologies,” he said. “But it still will lack the capabilities that I think will be in increased demand in the future.” “

Aug 15/08: 3rd Zumwalt? Gannett’s Navy Times reports that the US Navy has changed course, and now plans to ask Congress for the funds to build a 3rd DDG-1000 destroyer.

The question is whether Congress is inclined to give them those funds. The Senate’s FY 2009 defense bill includes $2.6 billion for this purpose, but the House bill had $0, and Seapower subcommittee leaders Taylor [D-MS] and Bartlett [R-MD] appear to have other shipbuilding priorities. The Navy’s reported compromise apparently involves ordering parts for the DDG-51 class, in order to make a production restart feasible. In a letter to Collins, Deputy Defense Secretary Gordon England reportedly wrote that:

“This plan will provide stability of the industrial base and continue the development of advanced surface ship technologies such as radar systems, stealth, magnetic and acoustic quieting, and automated damage control…”

If these reports are true, the US Navy and Department of Defense appear to be betting that House Armed Services Committee Chair Ike Skelton [D-MO] and company will be inclined to give in during reconciliation negotiations, and forgo their proposed funding for projects that matter to key Democrats like Taylor, in order to boost key Zumwalt Class advocates like Sen. Susan Collins [R-ME].

July 31/08: DDG-51 or Zumwalt? The US House Armed Services Seapower and Expeditionary Forces subcommittee holds in-depth hearings regarding the DDG-1000 and DDG-51 programs. Ranking minority member, Roscoe Bartlett [R-MD]

“When the Ranking Member and I first called for this hearing, the purpose was to ensure that all of the facts associated with the capabilities and procurement costs of the DDG 1000 and the capabilities and procurement costs of the DDG 51 were discussed… Predictably, this [subsequent program termination] announcement from the Navy has generated a firestorm here on Capitol Hill… So, we still need a hearing to clear the air on mission capabilities and costs of the two destroyer programs…

This subcommittee was, and is, concerned with cost estimates for the DDG 1000. But let me be very clear – this subcommittee did not recommend canceling the DDG 1000 as we have been accused in the press. What this subcommittee recommended, and the full House adopted in May of this year, was a pause to the third DDG 1000 while the development of technologies and true costs of construction became known on the first two ships… We have two panels of experts today to walk us thorough all these issues…”

See: Rep. Bartlett opening statement | Video of Navy Panel 1 and Analysts Panel 2 [Windows Media] | P1: Allison Stiller – USN Deputy Assistant Secretary, Ship Programs | Vice Admiral Barry McCullough – USN || P2: Ron O’Rourke – Congressional Research Service re: shipbuilding options | Dr. Eric Labs, Congressional Budget Office | Paul Francis, US GAO. All testimonies are PDF format.

July 23/08: Dead in the Water. Widespread reports indicate that the Navy is canceling the DDG-1000 program, capping construction at the 2 ships already ordered.

Reports indicate that the service will keep the DDG-51 Arleigh Burke Class production line open instead, producing either more Flight IIA ships, or inaugurating a Flight III that incorporates some technologies from the DDG-1000 program and/or an active array radars like Lockheed Martin’s S4R. The most reasonable estimates suggest that the trade-off would amount to about 11 DDG-51 destroyers instead of 5 Zumwalt Class light cruisers. The key assumptions behind that figure are twofold. The first assumption involves full funding for the actual cost of the first 2 DDG-1000 ships as an extraneous item, rather than having additional DDG-51s used as bill payers if the CBO’s estimate turns out to be correct again and the Navy is wrong again. Absent that assumption, the trade-off becomes about 9 DG-51s and 2 DDG-1000s vs. 7 DDG-1000s. The second assumption is that any modifications made don’t change the costs for the future DDG-51 destroyers by more than $100 million per ship.

Raytheon’s SPY-3 active array radar, dual-band radar fusion technologies, and open-architecture combat system appear to be the biggest technology losers from this decision, unless elements are incorporated into other ships. General Dynamics’ Bath Iron Works is the obvious contractor loser, unless an equivalent number of DDG-1000 destroyers replaces Zumwalt Class orders at a man-hours ratio of 2.0-2.2 DDG-51s for each DDG-1000 destroyer not purchased from Bath Iron Works. Lockheed Martin’s AEGIS naval combat system is the likely technology winner, via the removal of a key challenger. Sen. Collins [R-ME] confirms it | House Armed Services Committee applauds the decision | Virginia Pilot | Reuters | WIRED’s Danger Room | Navy Times | Maine’s Morning Journal | Wall St. Journal | Associated Press | National Journal’s Congress Daily | NY Times.

The excellent naval blog Information Dissemination includes a full analysis of the decision in “DDG-1000 review“, including this quotes from a May 2008 letter from Adm. Roughead to Sen. Kennedy [D-MA]:

“Since we are phasing out production of the DDG 51 class, there would be start-up costs associated with returning this line to production. As a result, the estimated end cost to competitively procure a lead DDG-51 (Flight IIa – essentially a repeat of the final ships currently undergoing construction) in Fiscal Year (FY) 2009 assuming a truncation of the DDG 1000 class after the two lead ships would be either $2.2B for a single ship or $3.5B for two lead ships (built at competing production yards). This estimate is based on a Profit Related to Offer (PRO) acquisition strategy. The average cost of subsequent DDG 51 Flight IIa class ships would be about $1.8B (FY09) per ship…

While there are cost savings associated with the DDG 1000’s smaller crew, they are largely offset by higher estimated maintenance costs for this significantly more complex ship. Clearly the relative value of the DDG 1000 resides in the combat system (Dual-Band Radar, Volume Search Radar, ASW Suite, etc) that provide this ship with superior warfighting capability in the littoral. However, the DDG 51 can provide Ballistic Missile Defense capability against short and medium range ballistic missiles and area Anti-Air Warfare capability (required in an anti-access environment) where the DDG 1000 currently does not. Upgrading the DDG 1000 combat system with this capability would incur additional cost. The DDG 51 class also possesses better capability in active open ocean anti-Submarine Warfare than does the DDG 1000. On balance, the procurement cost of a single DDG 51 is significantly less than that of a DDG 1000, and the life-cycle costs of the two classes are similar. “

The Congressional Budget Office’s Eric Labs, who has been proven right on several cost estimates for modern shipbuilding programs, estimates construction costs of the first 2 DDG-1000 destroyers are $5.1 billion each, with costs expected to decline to an average of $4.14 billion over the next 5 ships.

July 15/08: Gannett’s Navy Times reports that the DDG-1000 program’s odds of surviving beyond the first 2 ships appear to be fading. The Senate Armed Services committee included funding for a 3rd ship in its FY 2009 budget, but the House Armed Services committee did not. See March 14/08 entry for an indication of the prevailing opinion among HASC leaders. The 3rd ship’s fate will be decided in “reconciliation”, as the House and Senate hammer out a single agreed-upon budget for submission.

Meanwhile, work continues on the US military’s 2010 Program Objective Memorandum that lists multi-year goals and numbers for key projects. Inputs from the services are due by the end of July 2008, and a strained shipbuilding budget could force choices between the DDG-1000 program and closing more than one active shipbuilding line. Chief of Naval Operations Adm. Gary Roughead, Secretary of Defense Gordon England, and Defense Assistant Secretary John Young will meet at the end of July to discuss the DDG-1000 program directly. Meanwhile, the GAO is preparing a report on the program’s status, and the House Seapower subcommittee under powerhouse Rep. Gene Taylor [D-MS] will hold July 31/08 hearings concerning the program. Any one of these events could end up determining the program’s future.

April 7/08: SAR – down to 7. The Zumwalt Class appears in the Pentagon’s Selected Acquisition Report to December 2007:

“Program costs decreased $7,135.4 million (-19.8%) from $36,022.1 million to $28,886.7 million, due primarily to a quantity decrease of 3 ships from 10 to 7 ships (-$8,495.0 million) and revised estimates for budget reductions and inflation impacts on future ships (-$275.8 million).

These decreases were partially offset by increases in fiscal 2009 to fully fund ships 5-7 (+$693.6 million), quantity allocations

  • for schedule, engineering, and estimating (+$603.7 million), additional funding for the Advanced Gun System Pallets and Sea Strike capabilities (+$308.3 million), and the application of revised escalation indices (+$291.0 million).

…Note: Quantity changes are estimated based on the original SAR baseline cost-quantity relationship. Cost changes since the original baseline are separately categorized as schedule, engineering, or estimating “allocations.” The total impact of a quantity change is the identified “quantity” change plus all associated “allocations.”

March 14/08: DDG-51 or Zumwalt? The US House Armed Services Seapower and Expeditionary Forces Subcommittee meets to hear testimony on the FY 2009 National Defense Authorization Budget Request for Navy Shipbuilding. The DDG-1000 comes under fire from both sides of the political aisle. Chairman Taylor [D-MS] notes that a:

“…cost overrun of only 10% for the first two ships, which would be excellent for a first in ship class, is still close to $700 million dollars. With all the new technologies that must work for this ship to sail, a cost overrun of 20% or even 30% is not out of the question.”

He relays a scenario he has heard from Navy personnel, and it is amplified by ranking minority Rep. Bartlett [R-MD], who lays that scenario out as a choice:

“…is it wise to buy destroyers that at best will cost $3 billion a copy, and more likely $5 billion a piece if the Congressional Budget Office is right, while we shut down stable, more affordable production lines, such as the DDG-51 line? How much risk are you buying down with only 7 DDG 1000s, at a cost of $21 – $35 billion, when you could likely have at least 14, upgraded DDG-51s for that same amount?”

Read: “US Navy’s 313-Ship Plan Under Fire in Congress” for more excerpts, and additional materials from the day’s testimony.

March 12/08: TSCE. Raytheon announces the successful completion of key electronics system reviews, including the 6th major software review for the Zumwalt program, an applications preliminary design review for Release 5 of the TSCE (Total Ship Computing Environment) software, and a critical design review of the TSCE Release 5 infrastructure. The reviews reportedly verified that Raytheon and its teammates remain on schedule and on budget.

TSCE Release 5 adds 5 million delivered lines of code to the Zumwalt baseline, introducing surface warfare, integrated undersea warfare, information operations and general naval operations capabilities to the combat system. On the combat front, it also adds post-launch missile support for both RIM-162 Evolved Sea Sparrow Missile and Standard family missiles, and can use the full capabilities of the Mk110 57mm Close-in-Gun System and 155mm Advanced Gun System. On the operational front, TSCE R5 provides the framework to support the ship’s engineering control system.

As a point of comparison, TSCE R5 adds almost as many lines of code as Windows NT v3.1 possessed in total. Release 6 will have about 8.1 million lines, and all this is on top of about 20 million reused modules from other programs of record (AEGIS, SPQ-89 towed array programs, NAVSSI), plus all the code that makes up the commercial operating systems, database systems, middleware, et. al. used in the TSCE system. As a modern and familiar set of comparisons, Windows XP possesses about 40 million lines of code in total, and MacOS 10.4 possesses about 86 million.

Feb 15/08: 1000 & 1001 contract. Northrop Grumman Ship Systems in Pascagoula, MS received a $1.402 billion modification to previously awarded contract (N00024-06-C-2304). This contract will begin construction of the as-yet unnamed DDG-1001, as well as and construction of the DDG 1000 superstructure and hangar under a work share agreement with Bath Iron Works. Northrop Grumman Shipbuilding, a newly-formed company sector comprising the former Ship Systems and Newport News divisions, will build the composite deckhouse for all Zumwalt Class destroyers.

Work will be performed in Pascagoula, MS (34%); Gulfport, MS (12%); Pittsburgh, PA (7%); Burns Harbor, IN (4%); McLean, VA (4%); Walpole, MA (1%); Seattle, WA (1%) and various other locations (37%), and is expected to be completed by July 2014. Fabrication of the DDG 1000 Zumwalt’s deckhouse will start in Q4 2008, and construction of DDG 1001 is expected to begin in Q4 2009, with an expected delivery date of 2014. US Navy release | Northrop Grumman release.

Feb 15/08: 1000 & 1001 contract. General Dynamics Bath Iron Works, Inc. in Bath, ME received a $1.395 billion modification to previously awarded contract (N00024-06-C-2303). The effort includes construction of the DDG 1000 destroyer USS Zumwalt, and construction of DDG 1001’s mid-forebody under a work share agreement with Northrop Grumman Ship Systems (NGSS).

Work will be performed in Bath, ME (83%); Pittsburgh, PA (5%); Milwaukee, WI (4%); and various other locations (8%), and is expected to be complete by June 2013. The Zumwalt is currently scheduled to be delivered to the US Navy in 2014. US Navy release | GD release.

Dec 17/07: EO/IR. Raytheon announces a successful critical design review of the DDG-1000’s electro- optical/infrared (EO/IR) system, resulting in approval to advance the design into the production phase. The design review took place at Raytheon’s Maritime Mission Center in Portsmouth, RI, and participants included representatives from Raytheon, NAVSEA, the Naval Surface Warfare Center, Johns Hopkins Applied Physics Laboratory, and Lockheed Martin MS2 in Akron, Ohio. All review objectives were successfully met.

The Zumwalt Class’ EO/IR suite combines 5 individual sets of hardware and embedded software from Lockheed Martin, with the Raytheon-developed Total Ship Computing Environment as resident core software. That core software allows the sensors to be used as one or, when necessary, as 5 individual sensors with 5 different missions – including guidance for the ship’s self-defense gunnery. The system can be operated manually, and also delivers 360-degree, 24-hour situational awareness for the ship via features like automated mine-like object detection, and detection and tracking algorithms that discern targets in day and night, as well as high and low contrast environments. During final integration, Raytheon will complete the entire EO/IR “sensor-to-glass” thread – from target detection to workstation display.

EO/IR systems are becoming popular on modern warships, for two reasons. One is that they improve the ship’s capabilities against unconventional threats like fast boats, and also improve its ability to work in surveillance mode when patrolling near ports, energy infrastructure, and key waterways. The other reason is that modern ships feature more and more stealthy designs, which can be ruined if the ship must emit large amounts of radiation at all times via radar scans.

Dec 13/07: Award. Raytheon announces that the DDG-1000’s MK 57 PVLS sub-program, which enhances ship survivability as well as holding current and future missiles within an open architecture firing system, has been recognized by the Department of Defense and the National Defense Industrial Association (NDIA) as a 2006 Top 5 DoD program award winner for excellence in systems engineering. Members from Raytheon’s joint government-industry team were presented with the award during NDIA’s 10th Annual Systems Engineering Conference in San Diego, CA.

Nov 9/07: 1000 lead-in. Bath Iron Works, Inc. in Bath, ME received a $142 million cost-reimbursement modification to previously awarded contract (N00024-06-C-2303) for DDG 1000 Zumwalt Class Destroyer additional long lead material and pre-production planning to support detail design and construction.

Work will be performed in Bath, Maine (23%); Parsippany, NJ (18%); Pittsburgh, PA (12%); Sanford, ME (3%); Newtown Square, PA (3%); Brunswick, GA (2%); Paterson, NJ (2%); York, PA (2%); Baltimore, MD (2%); Erie, PA (2%); Iron Mountain, MI (2%) and various other locations of 1% or less each (total 29%), and is expected to be complete by January 2008.

Nov 9/07: 1000 lead-in. Northrop Grumman Ship Systems (NGSS) in Pascagoula, MS received a $90 million cost-reimbursement modification to previously awarded contract (N00024-06-C-2304) for DDG 1000 Zumwalt Class Destroyer additional long lead material and pre-production planning to support detail design and construction.

Work will be performed in Pittsburgh, PA (42%); Pascagoula, MS (11%); Parsippany, NJ (7%); Dallas, TX (7%); Walpole, MA (5%); Erie, PA (5%); York, PA (4%); Herndon, VA (4%), Hampton, NH (3%) and various other locations of 2% or less (total 12%), and is expected to be complete by January 2008.

Nov 5/07: PVLS. BAE Systems announces an $8 million contract from Raytheon Company for the first 2 shipsets of MK57 Vertical Launching System (VLS) for the U.S. Navy’s DDG 1000 Zumwalt destroyers, which begins the transition from design to production. Work will be performed at BAE Systems facilities in Minneapolis, Minnesota; Cordova, Alabama; and Aberdeen, South Dakota.

The MK57 VLS is being developed under a collaborative partnership between Raytheon Integrated Defense Systems and BAE Systems. The contract covers the continuation of design, integration, requirements verification, and the initial purchase of materials for the first 2 ship sets; it has the potential to increase up to $64 million, depending on future DDG-1000 production. Work on this contract award begins immediately and continues until January 2012.

Nov 5/07: CEDS. General Dynamics Advanced Information Systems in Fairfax, VA received a maximum $83 million cost-plus-award-fee, fixed-price incentive/ firm-fixed-price hybrid, indefinite-delivery/ indefinite-quantity contracts for the Phase II development, qualification, production, and support of the Common Enterprise Display System (CEDS) Display Consoles. The CEDS is a family of displays that will be implemented across platform systems on Navy surface ships, submarines, and aircraft, providing a common interface to the Platform Open Architecture Computing Environment. Remote displays will be used in conjunction with display consoles.

Work will be performed in Fairfax, VA (69.34%); Fremont, CA (8.52%); Washington, DC (7.64%); Tallman, NY (4.90%); Smithfield, PA (4.65%); Scottsdale, AZ (4.34%); Virginia Beach, VA (.41%); Huntsville, AL (.19%); Arlington, VA (.01%), and is expected to be complete by November 2008. The contract was competitively procured via full and open competition and was solicited through the Navy Electronic Commerce Online and Federal Business Opportunities websites, with 2 offers received (N00024-07-D-5222)

Nov 5/07: CEDS. DRS C3 Systems, LLC in Gaithersburg, MD received a maximum $62.6 million cost-plus-award-fee, fixed-price incentive/ firm-fixed-price hybrid, indefinite-delivery/ indefinite-quantity contracts for the Phase II development, qualification, production, and support of the Common Enterprise Display System (CEDS) Display Consoles. The CEDS is a family of displays that will be implemented across platform systems on Navy surface ships, submarines, and aircraft, providing a common interface to the Platform Open Architecture Computing Environment. Remote displays will be used in conjunction with display consoles.

Work will be performed in Duluth, GA (45%); Gaithersburg, MD (20%); Dahlgren, VA (20%); Johnstown, PA (10%); and Chesapeake, VA (5%), and is expected to be complete by November 2008. This contract was competitively procured and advertised via the Navy Electronic Commerce Online and Federal Business Opportunities websites, with 2 offers received (N00024-07-D-5223).

Oct 30/07: TSCE. Raytheon announces a successful preliminary design review for the “Release 5″ of the Total Ship Computing Environment Infrastructure (TSCEI), which comprises six releases of software and more than 5 million lines of code. TSCEI provides computer support for Zumwalt ship control, maintenance, logistics, training and other deployment functions. This level of integration and automation is far ahead of other warships, and is a primary driver for the DDG 1000’s 60% personnel reduction.

Oct 1/07: DBR. Raytheon announces a milestone in advancing the final development of the company’s Dual Band Radar (DBR) for the Zumwalt Class destroyers. Raytheon IDS led the government-industry team in the successful installation of the Lockheed Martin Volume Search Radar (VSR) array at the Surface Warfare Engineering Facility at the Naval Base Ventura County, Port Hueneme, CA. After extensive testing, Raytheon will now integrate the VSR with the SPY-3 X-band Multi-Function Radar to form the DBR.

Another 5 months of extensive testing is set to begin, representing a critical step in testing the maturity of the technology prior to advancing to full system production. Raytheon’s X-band, SPY-3 has successfully completed extensive land- based and at-sea tests over the last 2 years. Raytheon release.

FY 2007

Shipyard shift: Bath Iron Works to build #1; DDG 1000 long-lead; 2 ships authorized; Tumblehome hull risky?; DDG-51 vs. Zumwalt; Naval Fire Support study. 1/4 scale model, testing

Sept 25/07: Jane’s Naval Intelligence reports being told by the US Navy that the first DDG 1000 Zumwalt Class destroyer will be produced by General Dynamics’ Bath Iron Works (BIW) Maine shipyard instead of Northrop Grumman Ship Systems’ (NGSS) Ingalls shipyard. This announcement confirms rumors noted in the July 17/07 entry.

Sept 21/07: MSE. Raytheon Integrated Defense Systems in Tewksbury, MA received a $994.3 million cost-type modification to previously awarded contract (N00024-05-C-5346), covering key mission system equipment (MSE) production and engineering support services for the first 2 ships of class. The MSE includes the total ship computing environment infrastructure; acoustic sensor suite element – including the bow array sensor suite; dual band radar; electro-optic/infrared sensor; ship control system; identification of friend or foe; common array power and cooling systems; electronic module enclosures; and Mark 57 vertical launcher system. Raytheon is the mission systems integrator for the Zumwalt Class ships.

Work will be performed in Moorestown, N.J. (21%); Portsmouth, R.I. (20%); Andover, Mass. (18%); Tewksbury, Mass. (17%); Marlborough, Mass.; St. Petersburg, Fla.; Ft. Wayne, Ind. (17%); and Sudbury, Mass. (7%), and is expected to be complete by December 2012. The MSE is being procured for the program executive office for ships [PMS-500].

Aug 23/07: IASS. Raytheon announces a successful design review of the Zumwalt Class’ integrated acoustic sensor suite. IASS is a modular, open architecture combat system designed to provide the ship with a complete undersea warfare picture. It integrates the ship’s acoustic undersea warfare systems and subsystems, including the dual frequency bow array sonar, towed array sonar, towed torpedo countermeasures, expendable bathythermograph, data sensor, acoustic decoy launcher, underwater communications, and associated software.

The design review – which also determined that predefined space and weight allocations on board a Zumwalt Class ship are adequate to house the components of the acoustic sensor suite – took place at the Raytheon IDS Maritime Mission Center, Portsmouth, R.I. Participants included representatives from Raytheon, Naval Sea Systems Command, the Naval Undersea Warfare Center and the Naval Surface Warfare Center, as well as Lockheed Martin and other subcontractors. Raytheon’s OpenAIR business model also leveraged the help of small businesses including Argon ST, Applied Acoustic Concepts, and Adaptive Methods.

With this success, the U.S. Navy has given Raytheon Integrated Defense Systems (IDS) approval to advance the acoustic sensor suite’s design into production. Raytheon release.

July 24/07: DDG-51 vs. Zumwalt. In a statement before the US House Armed Services Subcommittee on Seapower and Expeditionary Forces, Congressional Budget Office representatives testify that [PDF]:

“The service’s 2008 budget suggests that the Navy expects the first two ships to cost $3.0 billion each and the following five to cost an average of $2.0 billion apiece – meaning that the entire class would have an average cost of $2.3 billion per ship.18 CBO, by contrast, estimates that the first two DDG-1000s would cost $4.8 billion apiece and the next five would cost an average of $3.5 billion each. The average per-ship cost of the class would be $3.9 billion.”

They go on to explain the Navy’s objections to their estimate, as well as their reasons for setting those objections aside. Summary:

“The Navy has stated that if the Congress authorized and bought two additional DDG-51s in 2008 – which would be the 63rd and 64th ships of their class – those destroyers would cost a total of $3.0 billion to $3.1 billion, or $1.5 billion to $1.6 billion apiece (in 2008 dollars). At the same time, the Navy’s 2008 budget submission to the Congress estimates the cost of building the seventh DDG-1000 in 2013 at about $2.1 billion (in 2013 dollars). Deflated to 2008 dollars (using the inflation index for shipbuilding that the Navy provided to CBO), that estimate equals about $1.6 billion – or the same as for an additional DDG-51, which would have the benefit of substantial efficiencies and lessons learned from the 62 models built previously. The lightship displacement of the DDG-1000 is about 5,000 tons greater than that of the DDG-51s under construction today. In effect, the Navy’s estimates imply that those 5,000 extra tons, as well as the 10 new technologies to be incorporated into the DDG-1000 class, will be free.”

July 17/07: Shipyard switch? Defense News reports that U.S. Navy and industry officials are discussing a plan to shift construction of the first DDG 1000 destroyer from Northrop Grumman’s Ingalls shipyard to the General Dynamics yard at Bath, ME. Bath Iron works has begun construction of the last Arleigh Burke Class destroyer (DDG 112), and has no work after it is delivered in 2011. Northrop Grumman Ingalls, meanwhile, is building its own Arleigh Burke ships, an LPD 17 San Antonio class ship, and the Coast Guard’s National Security Cutters.

Navy officials reportedly insist that the proposed shift does not reflect dissatisfaction with Northrop Grumman, which has been stung by public criticism of its work on LPD 17 amphibious ships and the Coast Guard’s Deepwater program. Perhaps, and perhaps not. What is certain is that building the second Zumwalt Class destroyer allows Ingalls to gain lessons learned from the first ship, and may also provide a break from the criticism of problems with its own first-in Class ships (LPD 17 amphibious assault ship, LHA 6 LHA-R mini-carrier, National Security Cutter). As long as they are awarded one of the 2 ships to build, the timing will make little difference to them.

If the Navy and the two shipyards agree on a lead ship swap, Secretary of the Navy Winter will make the final decision, which is not expected before July 23/07.

June 11/07: 1000 lead-in Bath Iron Works Inc. in Bath, ME received a $197.1 million cost-reimbursement type modification to previously awarded contract (N00024-06-C-2303) for DDG 1000 Zumwalt Class Destroyer long lead material, and pre-production planning to support detail design and construction.

Work will be performed in Bath, Maine (44%), Parsippany, NJ (16%), Pittsburgh, PA (10%), Iron Mountain, MI (5%), Erie, PA (4%), Kingsford, MI (4%), Mississauga, Ontario, Canada (4%), York, PA (3%), Kent, WA (3%), Indianapolis, IN (3%), Hudson, ME (2%), and Newton Square, PA (2%).

June 11/07: Northrop Grumman Ship Systems (NGSS) in Pascagoula, MS received a $10 million cost-plus-award-fee modification under previously awarded contract (N00024-06-C-2304) for procurement of DDG 1000 research, development, test and technical services.

Work will be performed in Pascagoula, MS (45.09%); Herndon, VA (26.66%); Annapolis, MD (6.53%); Aberdeen, MD (4%); West Bethesda, MD (3.75%); Linthicum, MD (2.68%); San Antonio, TX (3.76%); Washington, DC (2.32%); Reston, VA (2%); Arlington, VA (1.20%); Pt. Mugu, CA (1.01%); Newport News, VA (0.75%); and Tacoma, WA (0.25%), and is expected to be complete by December 2007.

June 5/07: 1000 lead-in. Northrop Grumman Ship Systems in Pascagoula, MS received a $191.1 million cost-reimbursement type modification to previously-awarded contract (N00024-06-C-2304). It covers DDG 1000 Zumwalt Class Destroyer long lead material such as steel plates, pipe, cable and other major equipment. It also covers production planning labor, integrated logistics support, and systems integration engineering to support detail design and construction.

Work will be performed in Pascagoula, MS (47%), Pittsburgh, PA (30%), Parsippany, NJ (12%), Indianapolis, IN (5%), Erie, PA (4%), and Iron Mountain, MI (2%), and is expected to be completed by November 2007. Northrop Grumman release.

(click to view full)

May 15/07: Fire Support Study. US Joint Forces Staff College JAWS Masters Thesis by Col. Shawn Welch, USARNG, is published: Joint and Interdependent Requirements: A Case Study in Solving the Naval Surface Fire Support Capabilities Gap [PDF]. Wins National Defense University 2007 Award for best thesis. Persuasively argue that current capabilities are insufficient, casts doubt on the DDG-1000 Class as an adequate solution, and makes a case that faulty assumptions have helped to create this problem. Includes a number of interesting anecdotes, as well as analysis.

April 6/07: Northrop Grumman Ship Systems in Pascagoula, MS received a $7.5 million cost-plus-award-fee modification to previously awarded contract N00024-06-C-2304, for DDG 1000 research, development, test and technical services.

Work will be performed in Pascagoula, MS (75.53%); Herndon, VA (9.77%); Aberdeen, MD (3.33%) Annapolis, MD (2.93%); San Antonio, TX (2.00%); El Segundo, CA (1.99%) Pt. Mugu, CA (1.28%); Linthicum, MD (0.69%); West Bethesda, MD (0.67%); Washington, DC (0.57%); Reston, VA (0.51%); Arlington, VA (0.40%); and Newport News, VA (0.33%), and is expected to be completed by September 2007. All contract funds will expire at the end of the current fiscal year.

April 2/07: Tumblehome tumble-over? Defense News runs an article that openly questions the DDG-1000 design’s stability at sea:

“At least eight current and former officers, naval engineers and architects and naval analysts interviewed for this article expressed concerns about the ship’s stability. Ken Brower, a civilian naval architect with decades of naval experience was even more blunt: “It will capsize in a following sea at the wrong speed if a wave at an appropriate wavelength hits it at an appropriate angle”…”

Rigid traditionalism of the same species that dismissed the aircraft carrier? Prescient early warning of a catastrophe? Or something else? Read DID’s report.

March 21/07: 1000 turbines. Rolls Royce Naval Marine, Inc. received a $76.6 million firm fixed price contract for DDG-1000 main turbine generator sets (N00024-07-C-4014). No specifics yet, but see DID’s coverage of the MT30 engine in the technology section, above. Work will be performed in Walpole, MA and is expected to be complete by September 2009. The contract was competitively procured and advertised on the Internet, with 2 offers received. GE Marine would have been the other offeror.

March 20/07: Bath Iron Works Inc. received a $12.6 million cost-plus-award-fee modification under previously awarded contract N00024-06-C-2303, for DDG 1000 research, development, test and technical services.

Work will be performed in Bath, ME (39.08%), Brunswick, GA (19.70%), West Bethesda, MD (12.22%) Groton, CT (9.55%), Arlington, VA (6.10%), Elk Grove, VA (4.33%), Herndon, VA (3.79%), Annapolis, MD (2.73%), Pt. Mugu, CA (1.72%), Montgomeryville, PA (0.50%), Washington D.C. (0.25%), and San Antonio, Texas (0.03%), and is expected to be complete by January 2008. Contract funds in the amount of $3.6 million will expire at the end of the current fiscal year.

March 7/07: PMM research. DRS Power Technology Inc in Fitchburg, MA received a $19.7 million cost-plus-fixed-fee contract for Integrated Power Systems research, and development of a Permanent Magnet Motor (PMM) System Land Based Test Site and Next Generation Design.

DRS’ PMM was taken out of the DDG 1000 design to keep it on schedule, and a proven but heavier and less productive AIM system was installed instead. Continuing research could add new options to future Zumwalt Class destroyers – or more likely, to successor ships like the CG (X). See full DID coverage.

Feb 12/07: PVLS. Raytheon Integrated Defense Systems and BAE Systems announce completion of a restrained test firing of a Standard Missile-2 Block IV MK72 rocket booster on the new MK57 PVLS missile launcher. The test at White Sands Missile Range, NM demonstrated the system’s ability to safely withstand a static burn of an MK72 rocket motor in the new launcher. See Raytheon release.

Feb 12/07: 1000 MSE. Raytheon Integrated Defense Systems in Tewksbury, MA received a not-to-exceed $305.7 million cost-type modification to previously awarded contract (N00024-05-C-5346) for DDG 1000 Mission System Equipment (MSE) and engineering support services. Work will be performed in Tewksbury, MA (47%); Portsmouth, RI (28%); and Moorestown, NJ (25%), and is expected to be complete by September 2007.

This is part of the DDG 1000 Ship Systems Detailed Design and Integration effort, and the hardware involved includes: Total Ship’s Computing Environment Infrastructure; Acoustic Sensor Suite Element – including the Bow Array Sensor Suite; Dual Band Radar; Electro-Optic/ Infrared Sensor; Ship Control System; Identification of Friend or Foe; Common Array Power and Cooling Systems; Electronic Module Enclosures; and the Mark 57 PVLS Vertical Launcher System.

Feb 6/07: IPS R&D. General Atomics in San Diego, CA, who is also well known for designing power distribution systems used by the US Navy on its aircraft carriers, receives a $10.7 million cost-plus-fixed-fee contract to research and develop Integrated Power Systems (IPS).

A spokesman for the Space and Naval Warfare Systems Center in Charleston, SC said that the contract is not specifically geared to any platform already under construction like the DDG 1000. Instead, technologies developed and lessons learned under this R&D contract will be integrated into future IPS systems generally.

Jan 29/07: Design. Northrop Grumman Ship Systems in Pascagoula, MS received a $268.1 million cost-plus-award-fee/ cost-plus-fixed-fee modification under previously awarded contract (N00024-06-C-2304) to exercise an option to complete the detail design of the Zumwalt Class Destroyer. The total value of the detail design effort is $307.5 million (see Aug 31/06 entry).

The contract funds further DDG 1000 detail design and procurement of vendor-furnished information and long-lead materials, and runs through 2013. Work will be performed at Northrop Grumman Ship System’s Pascagoula, MS; Gulfport, MS; and Washington DC facilities. See also Northrop Grumman release.

Jan 29/07: Design. Bath Iron Works Inc. in Bath, ME received a $257.5 million cost-plus-award-fee/cost-plus-fixed-fee modification under previously awarded contract (N00024-06-C-2303) to exercise an option to complete Zumwalt Class Destroyer detail design. The total value of the detail design effort is $337.4 million – $79.9 million for advanced zone detail design was awarded as part of the basic contract (see Aug 8/06 entry).

DDG-1000: night moves…
(click to view full)

Jan 19/07: Lighting. Skyler Technologies Group subsidiary RSL Fiber Systems, LLC in Salem, New Jersey announces a contract from Northrop Grumman Ship Systems in Pascagoula, MS to supply the Advanced Lighting System (ALS) for the U.S. Navy’s DDG-1000 Zumwalt Class. Their Advanced Lighting System offers significant benefits to stealth, durability, and maintainability, and has already been installed in several new US Navy ships.

In a conversation with DID, RSL Fiber systems estimated a total contract value is in excess of $12.5 Million for the six (6) DDG 1000 class ships planned. The estimated contract value for the two (2) DDG 1000 class ships already approved by Congress is in excess of $4.9 Million, and includes engineering support services and the supply of remote source lighting systems and related hardware. See our article “DDG-1000 ‘Destroyers’ to get ALS Lighting System” for more coverage of ALS details, advantages, and resources.

Nov 7/06: TSCE. Raytheon announces the delivery of a complete set of specifications, design documents, source code and user guides for the DDG-1000 Total Ship Computing Environment Infrastructure (TSCEI) Release 4.1, which will be made available to other US Navy open architecture programs via the PEO IWS SHARE (Software-Hardware Asset-Reuse Enterprise) repository. The TSCE is a robust, enterprise-network computing system on which all DDG-1000 application software programs run. IBM blade servers are the Zumwalt Class’ hardware medium.

Under the Navy’s DDG-1000 Detail Design and Integration contract awarded in 2005, Raytheon IDS serves as the prime mission systems equipment integrator for all electronic and combat systems. See Raytheon release.

Oct 24/06: DBR. Raytheon reports successful on-schedule integration of Lockheed Martin’s engineering development model S-Band array with receiver, exciter, and signal/data processing equipment for the Volume Search Radar (VSR) portion of the DDG-1000 destroyer’s Dual Band Radar (DBR). Raytheon had already developed and tested the X-band component of the DBR, known as the AN/SPY-3. Now the challenge is to integrate them together.

Oct 17/06: 2 ships authorized. President George W. Bush signs the FY 2007 defense appropriations bill into law as Public Law 109-364. The final bill authorizes the buildout of 2 DDG-1000 ships, to be incrementally funded. It is silent re: future years or future ships, imposing no limits.

FY 2006

Milestone B go-ahead; Design & reviews ongoing. Zumwalt concept: inshore

Aug 31/06: QTA, DDI IBR. Raytheon issues a release reporting the successful completion of two significant events for the DDG-1000 Zumwalt Class Destroyer Program: the third Quarterly Technical Assessment (QTA) and the Detail Design and Integration (DDI) Integrated Baseline Review (IBR), both of which were conducted at the DDG 1000 Collaboration Center in Washington, DC.

The QTA reviewed and assessed the following major design and development categories: System Integration, Ship Detail Design, Mission System Equipment Development, Mission System Design and System Software Development. Participants included representatives from the U.S. Navy PEO Ships/PMS 500, PEO IWS, Naval Surface Warfare Dahlgren Division and the DDG-1000 industry teammates including Raytheon, Northrop Grumman Ship Systems, Lockheed Martin, BAE Systems and General Dynamics/Bath Iron Works.

The program’s DDI IBR involved the US Navy assessing the program scope, resources, Integrated Master Schedule and Earned Value Management processes. This key milestone was also successfully completed, and concluded with the Navy’s approval of the $2.7 billion Program Management Baseline. Firms involved in this stage included Raytheon, Lockheed Martin, BAE Systems, General Dynamics/ Bath Iron Works, Northrop Grumman Defense Missions Systems, Boeing and L-3 Communications.

Aug 31/06: Design. Northrop Grumman Ship Systems (NGSS), Pascagoula, MS is being awarded a $95.9 million cost-plus-award-fee/ cost-plus-fixed-fee contract for DDG-1000 Zumwalt Class destroyer detail design, maintenance of the DDG-1000 integrated data environment for those designs (IDE), and procurement of vendor furnished information (VFI) and long lead material (LLM) to support detail design. Work will be performed in Pascagoula, MS and is expected to be complete by September 2007. The contract was not competitively procured by the Naval Sea Systems Command in Washington, DC (N00024-06-C-2304).

The total value of this detail design effort is $307.5 million, with $39.4 million funded at contract award for advanced zone detail design. The remaining detail design efforts are included in a priced option valued at $268.1 million. The IDE maintenance effort will be fully funded at contract award in the amount of $11.5 million, and Northrop Grumman will be awarded a Not-to-Exceed (NTE) line item for vendor furnished information and long-lead materials valued at $45 million. The maximum amount for which the Government is liable under that NTE is $22.5 million, prior to further definitization.

Aug 8/06: Design. General Dynamics subsidiary Bath Iron Works Inc. (BIW) in Bath, Maine recently received a $115.8 million cost-plus-award-fee/ cost-plus-fixed-fee contract for DDG-1000 Zumwalt Class Destroyer detailed design, and procurement of vendor furnished information (VFI) in support of the detailed design. Work will be performed in Bath, ME and is expected to be complete by December 2008. Per the previous contract announcement, this contract was not competitively procured by the Naval Sea Systems Command in Washington DC (N00024-06-C-2303).

The total value of the detail design effort is actually $336.3 million. This initial award consists of $78.5 million funded at contract award, plus a not-to-exceed (NTE) line item for procurement of “vendor-furnished information” valued at $37.3 million, for a total of $115.8 million. Note that the maximum amount for which the government is liable under the NTE line item prior to definitization is $18.6 million, so the $115.8 million total may not be reached. The remaining detail design efforts are included in a priced option valued at $257.7 million.

May 25/06: DBR. Raytheon announces that the U.S. Navy’s first shipboard active phased array multifunction radar, Raytheon’s AN/SPY-3, has successfully participated in a series of at-sea tests, including the first time the radar has acquired and tracked a live controlled aircraft while at sea. Raytheon release.

May 1/06: Reader Justin Hughes notifies us that under a motion approved by the US House Force Projection Subcommittee, the DDG-1000 program would be capped at 2 ships as a technology demonstrator for the forthcoming CG (X) cruiser program. This is all part of the US FY 2007 defense budget process, and does not represent a final decision, but could be influential. Chairman Bartlett [R-MD] did acknowledge that the CG (X) cruiser are slated to incorporate a new type of radar that “might not be ready for use for a decade.” See Defense News article.

There’s also an interesting but completely unofficial discussion here re: what might be done with those funds – see esp. the information re: the DDG-51 Arleigh Burke Class upgrades. This tip would prove prophetic.

April 13/06: Design. Bath Iron Works in Bath, ME receives a $42.8 million cost-plus-award-fee modification to previously awarded contract (N00024-05-C-2310) for the continuation of DD (X) transition design efforts and initial detail design and long lead material procurement for DD (X) ship construction.

This effort is for transitional and detail design for DD (X), such that work can be accomplished prior to the award of a detail design completion contract in order to minimize impact on the ship industrial base. Work will be performed in Bath, ME and is expected to be complete by June 2006.

April 12/06: DID’s “The Lion in Winter: Government, Industry, and US Naval Shipbuilding Challenges” reproduces a speech by Secretary of the Navy Donald Winter. In many ways, the DDG-1000 class is a poster-child example of the shipbuilding dynamics he discusses. This has implications for overall US naval policy, and also for the program’s future.

March 2/06: Design. Northrop Grumman Ship Systems in Pascagoula, MS received a $42.8 million cost-plus-award-fee, level of effort modification to previously awarded contract (N00024-05-C-2311) for continuation of DD (X) transition design efforts, initial detail design and long lead material procurement for DD (X) ship construction.

Work will be performed in Pascagoula, MS and is expected to be complete by June 2006.

Nov 23/05: Milestone B Go-ahead. See DID coverage, and Navy Times article.

Nov 11/05: DAB Review. DD (X) Destroyer Program Has Its Defense Acquisition Board Review. Inside Defense goes over some of the issues and considerations.

FY 2005

$3 billion mission systems integration contract; Flag-level Critical Design Review passes; IBM picked for TSCE; PVLS passes factory acceptance testing; TSCE R2 software certified; SPY-3 radar passes Milestone B; Underwater eXplosion testing. DD (X) Destroyer

Sept 30/05: Design. Bath Iron Works in Bath, ME (N00024-05-C-2310) and Northrop Grumman Ship Systems in Pascagoula, ME (N00024-05-C-2311) each receive a not-to-exceed ceiling price $53.4 million (with a limitation of $26.7 million) cost-plus-award-fee, level of effort letter contract for the Phase IV DD (X) program transition design effort. They will provide vendor furnished information for key equipment, completion of system diagrams and maintenance of the DD (X) integrated data environment for design.

Work will be performed in Bath, ME and Pascagoula, MS and is expected to be complete by January 2006 (BIW: N00024-05-C-2310, NGC: N00024-05-C-2311).

Sept 14/05: CDR. The DD (X) Program’s Flag-Level Critical Design Review (CDR) is completed for the overall system design, marking the end of Phase III and a process advertised as being “on schedule and within 1% of stated budget.” See the release for more details, which include important information about the program.

Note that this effort included an unusually thorough approach of CDRs for each of 10 Engineering Development Models, representing a judgment that they have achieved enough have achieved both technical maturity and cost insight. The 10 EDMs were:

  • Wave-Piercing Tumblehome Hull
  • Infrared Mockups
  • Composite Deckhouse and Apertures
  • Dual Band Radar (DBR)
  • Integrated Power System
  • Total Ship Computing Environment (TSCE)
  • Integrated Undersea Warfare System (IUSW)
  • Peripheral Vertical Launching System (PVLS)
  • Advanced Gun System (AGS)
  • Autonomic Fire Suppression System (AFSS)

Aug 4/05: IBM for TSCE. Raytheon Integrated Defense Systems has selected IBM to supply core computing and storage equipment for the DD (X) multi-mission destroyer. The equipment will form the backbone of the Total Ship Computing Environment (TSCE), based on an Open Architecture approach that makes it easier to integrate commercial-off-the-shelf (COTS) hardware and software and makes wider interoperability easier.

The selection of IBM followed a competition in which Raytheon solicited proposals from leading computer suppliers, noting the complex requirements of the TSCE and the challenges of operating electronic equipment in the harsh environment aboard a surface combatant. IBM will work with Raytheon to complete detailed specifications and supply COTS equipment to Prime contractor Northrop Grumman for the first DD(X) ship delivery.

August 2/05: PVLS. The MK57 Vertical Launching System (VLS) Engineering Development Model (EDM) successfully passes Factory Acceptance Testing two weeks ahead of schedule. The testing was designed to prove that the MK 57 PVLS system has a sound open architecture, capable of receiving and processing missile select and launch commands within the mission timelines. See release. Back on June 23/05, another release noted a Maximum Credible Detonation Event (MCDE) test at the Aberdeen Test Center. That test was designed to confirm that that weapons stored in a PVLS module will not detonate during a worst case scenario in an module next to it.

July 26/05: DID’s “DD (X) Program Passes Review, But Opposition & Reports Cloud Future (Updated)” Notes political opposition from various circles. Also notes recent Congressional testimony from the CBO and GAO discussed cost estimates that have risen from $1 billion to $3.2 billion average per ship, ship life cycle costs likely to be about double that of the DDG 51 Arleigh Burk Class ($4 Billion vs. $2.1 billion), possible further cost increases, and technical project risks that still remain.

July 19/05: GAO. US GAO submits a briefing to Congress: “Progress and Challenges Facing the DD (X) Surface Combatant Program.” The Congressional Budget Office also submits a briefing: “The Navy’s DD (X) Destroyer Program” [PDF].

(click to view full)

July 18/05: The National Team announces that they have successfully completed the Initial Critical Design Review for the DD (X) overall system design, allowing the program to pass on toward the Flag level review in September 2005 and enter detail design. This was a DD (X) Phase III program event that addressed the total system’s design maturity, and overall progress made to date on DD (X) engineering-development models of hardware and software components that have already been built, tested and reviewed by the National Team and the Navy. Examples include the integrated deckhouse and apertures, total ship computing environment, dual-band radar system, integrated under-sea warfare system, MK 57 advanced vertical launching system, automated gun system and wave-piercing tumblehome hull.

July 5/05: DID’s “DD (X) Program: Developments & Alternatives.” Notes ongoing Congressional discussions re: cost caps, despite Congressional action that had hiked the price per ship. Also notes the lobbying effort underway to reactivate Iowa Class battleships instead.

June 14/05:GAO Delivers DD (X) Program Interim Report.” Among other things, it says that technology development for the U.S. Navy’s advanced DD (X) destroyer is still lagging despite progress in a number of areas.

June 1/05: UX testing. The DD (X) National Team announces the successful completion of Underwater Explosion testing on the ship’s Quarter Scale Model. The tests were done to determine the unique destroyer hull form’s reaction to underwater explosions. Explosive charges were placed at predetermined distances from the model, and the intensity of the charges was stepped up as the test series progressed. The release reports that the new design’s wave-piercing bow, tumblehome cross section, step deck area and rising stern responded as envisioned. See release.

May 23/05: $3 billion contract for DD (X). A consortium led by Raytheon Co. Integrated Defense Systems (IDS) in Tewksbury, MA received a cost-plus award-fee letter contract with a not-to-exceed ceiling of $3 billion for DD (X) ship system integration and detail design. Raytheon and its partners will develop systems for the new destroyers that improve on existing technology, including radar, sonar, the ships’ computing network and external communications network and missile launchers. The consortium will also be integrating the systems to make sure they work together.

Work will be performed by Raytheon IDS in Tewksbury, MA; Lockheed Martin Maritime Systems and Sensors in Moorestown, NJ; BAE acquisition United Defense LP in Minneapolis, MN; Northrop Grumman Mission Systems in King George, VA; and Ball Aerospace & Technology Corp. in Westminster, CO; and is expected to be complete by December 2009. This contract was not competitively procured. The Naval Sea Systems Command, Washington, D.C. issued the contract (N00024-05-C-5346).

April 18/05:Senate Hearing On DD (X) Procurement Strategies.” The legislature doesn’t like the “winner take all” approach, and wants the funding spread around. The Navy disagrees, citing additional costs of up to $300 million per ship. DID covers the issue.

March 31/05: TSCE. Software Release 2 of DD (X) Total Ship Computing Environment (TSCE) receives formal certification from the Navy, after successfully meeting all entrance and exit criteria. Two successful demonstrations of Software Release 2 at the U.S. Navy’s Open Architecture Test Facility (OATF) in Dahlgren, VA demonstrated that the open-architected TSCE is easily portable between different computing platforms, can be reconfigured quickly without having to write new code, and delivers the functionality essential for DD(X) to perform its multiple missions.

The first large-scale implementation of the US Navy’s Open Architecture (OA) strategy, the TSCE integrates all shipboard warfighting and peacetime operations into a single, common enterprise computing environment. This approach gives the Navy increased ability to use standardized software and commercial-off-the-shelf (COTS) hardware across a family of ships. See release.

March 9/05: Design. Northrop Grumman Ships Systems in Pascagoula, MiS received a $10 million cost-plus-fee modification to previously awarded contract (N00024-02-C-2302) to refine the DD (X) Program Life Cycle Cost Estimate deliverable. This effort modifies Contract Data Requirements List A.20 with additional requirements in order to provide greater detail into the DD (X) Program Life Cycle Cost Estimate.

Work will be performed in Tewksbury, MA (35%); Pascagoula, MS (23%); Bath, Maine (18%); Minneapolis, MN (7%); Moorestown, NJ (4%); Farmington, UT (4%); King George, VA (4%); Chantilly, VA (3%); and Alexandria, VA (2%), and is expected to be complete by March 2005.

Jan 14/05: DBR. DD (X) AN/SPY-3 Multi-Function Radar Passes Milestone B Criteria Tests. The Engineering Development Model (EDM) for the AN/SPY-3 S-Band Multi Function Radar has successfully completed the Milestone B test event at the Navy’s Wallops Island, VA test range. The test served to assess radar performance with regard to environmental, detection, and tracking performance.

FY 1998 – 2004

DD-21 becomes DD (X); Northrop Grumman wins DD-X, 2.9 billion contract; DD-21 development contracts.

April 14/04: Design. $78 million to Northrop Grumman under DD (X).

April 29/02: Design. Northrop Grumman Ship Systems (NGSS) division Ingalls Shipbuilding Inc. in Pascagoula, MS wins the down-select, and a $2.879 billion cost-plus-award-fee contract for DD (X) Design Agent activities. These include the design, build and test of engineering development models (EDMs) for major subsystems and components for the DD (X) destroyer.

Work will be performed in Pascagoula, MS and Bath, ME (38%); Portsmouth, RI (16%); Minneapolis, MN (13%); Tewksbury, MA (9%); Reading, MA (4%); Andover, MA (4%); Newport News, VA (3%); Fullerton, CA (2%); Fort Wayne, IN (2%); Bethesda, MD (2%); Anaheim, CA (2%); Cincinnati, OH (2%); Hudson, MA (2%); and Philadelphia, PA (1%) and is to be complete by September 2005.

This contract is incrementally funded; funding in the amount of $273.2 million has been committed with this award (N00024-02-C-2302). It was competitively procured via publication in the Commerce Business Daily and the solicitation was posted to the Navy Electronic Commerce Online (NECO) Internet web page, with 2 offers received.

See also US assistant secretary of the Navy for research, development and acquisition John Young, Jr’s briefing regarding the downselect:

“The award will be made to Ingalls Shipbuilding, Incorporated, the Gold Team lead. Their proposal was selected due to its overall management and technical approach, coupled with superior engineering development models and exceptional specified performance features of the proposed design. The superior EDMs and features included an innovative peripheral vertical launch system, dual-band radar suite, two-helicopter spot flight deck, and stern boat-launching system.

The contract was competitively awarded based on best value… The source selection process was the first of a kind for a Navy shipbuilding program and will be the model for future Navy acquisitions… BIW will continue to be involved in the design of the ship and development of the EDMs, to ensure that both shipbuilders can product DD(X) and can compete for the detailed design and construction of the lead ship in fiscal year 2005.”

Dec 21/01: End of DD-21, Birth of DD (X). US under secretary of defense for acquisition, technology and logistics Pete Aldridge announces that the DD-21 program has been terminated, following the Quadrennial Defense Review. It will be replaced by a program called DD (X). Pentagon transcript.

Oct 25/01: $60.2 million to the DD-21 Alliance (N00024-98-9-2300).

June 14/01: A not-to-exceed $124.3 million firm-fixed-price advance agreement modification for the extension of the DD 21 Phase II period of performance.

Work will be performed by the “Blue Team” (42%) led by Bath Iron Works in Bath, Maine and Lockheed Martin Government Electronic Systems in Moorestown, N.J.; the “Gold Team” (42%) led by Ingalls Shipbuilding in Pascagoula, MS, with Raytheon Systems Co. in Falls Church, VA; and United Defense Limited Partnership (UDLP) in Minneapolis, MN (16%). Work is expected to be complete by September 2001 (N00024-98-9-2300, modification 0037)

May 31/01: $7.1 million to the DD-21 Alliance (N00024-98-9-2300).

May 29/01: $6.7 million to the DD-21 Alliance (N00024-98-9-2300).

May 17/01: $7.1 million to the DD-21 Alliance (N00024-98-9-2300).

May 1/01: $5.4 million to the DD-21 Alliance (N00024-98-9-2300).

April 2/01: $29 million to the DD-21 Alliance (N00024-98-9-2300).

Jan 9/01: $12 million to the DD-21 Alliance (N00024-98-9-2300).

Jan 9/01: 7 million to the DD-21 Alliance (N00024-98-9-2300).

Nov 2/2000: $10.6 million to the DD-21 Alliance (N00024-98-9-2300).

May 1/2000: $16 million to the DD-21 Alliance (N00024-98-9-2300).

Nov 23/99: A $238 million contract modification to the DD-21 Alliance for the DD-21 Phase II effort, which includes the development of 2 competitive DD-21 initial systems designs with accompanying DD 21 virtual prototypes.

Work will be performed in Bath, Maine (21%); Moorestown, NJ (21%); Pascagoula, MS (21%); Falls Church, VA (21%); and Minneapolis, MN (16%), and is expected to be complete by January 2001 (N00024-98-9-2300).

Feb 17/99: $12 million to the DD-21 Alliance (N00024-98-9-2300).

Aug 18/98: The DD-21 Alliance, comprised of Bath Iron Works Corp. in Bath, Maine, and Ingalls Shipbuilding in Pascagoula, MS received is being awarded a $16.5 million agreement modification to a previously awarded contract (N00024-98-9-2300) for the Phase I development of DD-21 design concepts. Bath Iron Works Corp. has been selected by the DD-21 Alliance to lead the alliance and execute the Phase I agreement, which provides for the establishment of 2 competing teams who will perform requirements analyses and trade studies, and develop 2 competitive DD-21 system concept designs. Each team will implement total ship systems engineering and cost as an independent variable principles in order to achieve significant reductions in ship procurement costs, operation and support costs, and manning levels over current Navy combatants. This agreement has a potential cumulative value of $68.5 million.

Work will be performed in Moorestown, NJ (30%), Pascagoula, MS (25%), Falls Church, VA (25%), and Bath, Maine (20%), and is expected to be complete in October 1999. The Naval Sea Systems Command in Arlington, VA is managing the contract.

Additional Readings & Sources

Official Reports

Defense Acquisitions: Progress and Challenges Facing the DD (X) Surface Combatant Program [PDF]. Paul L. Francis, GAO director of acquisition and sourcing management, in testimony before the House Committee on Armed Services, Subcommittee on Projection Forces.

  • US Government Accountability Office Briefing (GAO-05-924T, July 19/05) – Defense Acquisitions: Progress and Challenges Facing the DD (X) Surface Combatant Program. Paul L. Francis, GAO director of acquisition and sourcing management, in testimony before the House Committee on Armed Services, Subcommittee on Projection Forces. Includes GAO cost estimates.

  • US Congressional Budget Office (Doc #6561, July 19/05) – The Navy’s DD (X) Destroyer Program [PDF]. Statement of Assistant Director for National Security J. Michael Gilmore before the House Committee on Armed Services, Subcommittee on Projection Forces. It’s worth looking at their methodology for calculating program costs, and the conclusions they’ve come to.

  • US Congressional Research Service (June 24/05) – Navy DD (X) and CG (X) Programs: Background and Issues for Congress

  • US Government Accountability Office (GAO-05-752R, June 14/05) – Progress of the DD (X) Destroyer Program. Report to the Senate Committee on Armed Services, Subcommittee on Seapower; and the House Committee on Armed Services, Subcommittee on Projection Forces. Discusses the state of various key technologies in the program.

News & Views

“The history of NSFS, current national strategy, joint and service specific doctrine, current and alternative capabilities associated with providing NSFS are evaluated against current attempts to bridge NSFS gaps with naval aviation and missiles alone. This study will demonstrate a credible case for re-examining major caliber guns and the ships that mount them as part of the NSFS solution set. This thesis identifies five [5] courses of action to meet the NSFS requirements to defeat a future near-peer competitor in the littorals in a timely and affordable manner.”

“The greater the capabilities, generally, the higher the costs – which means that the Navy can afford to buy fewer platforms. But that too drives up the cost per ship. Both factors – greater capability and lower numbers of ships – are pushing the cost of shipbuilding to prohibitive levels.”

Open Architecture

The idea is to have an integrated but open architecture approach from the very beginning, using systems that maximize present and future interoperability and minimize technical “lock in” to a single-vendor solution. This creates a single IT framework, makes it easier to integrate commercial-off-the-shelf (COTS) hardware and software, and makes wider interoperability easier. It also allows the Navy and the prime contractors to use more conventional commercial acquisition approaches/ partnerships to support and upgrade the technology. Open Architecture is a concept that has spread across the Navy’s existing and future fleet, via upgrade programs and new ship construction that insist on it. See these interviews and presentations for more.

The Derivative (?) CG-X Program

The CG-X program, which was originally envisioned as a larger and more capable version of the design that became the Zumwalt Class, has been shelved. It could be revived, but the plan going forward from FY 2011 is to field DDG-51 Flight III destroyers instead.


fn1. From the US Navy’s FY 2012 budget documents.

Categories: News

Germany’s Arms Exports Still Facing Political Pressure Under Strained Federal Coalition

Thu, 10/16/2014 - 10:30

  • Germany’s Economy Minister Sigmar Gabriel has been advising defense manufacturers to diversify as exports to unsavory regimes would be put under increased scrutiny. With a mid-year report he’s delivered on promises to increase transparency and timeliness in disclosing export licenses, but with sales to oppressive regimes in Saudi Arabia and Qatar, Gabriel is still facing criticism [Deutsche Welle] as the number dropped by “only” €700M to €2.2B (i.e. -24% to $2.8B, or about back to 2012 levels).

  • Gabriel’s critics from left-wing parties may be in the opposition today, but Gabriel’s center-left SPD will be their natural senior partner in future coalitions. The SPD is governing at the federal level alongside Angela Merkel’s CDU, but recently there’s been talk of a Red-Red-Green coalition in the Thuringia state, all while the new Eurosceptic AfD party made big gains in local elections. European coalition politics are fun! Reuters | The Local | Die Welt [in German].

US Biz Dev

  • USSOCOM is organizing an industry day [FBO] about its forthcoming RFP for Medium Endurance Unmanned Air System (MEUAS) III ISR on Dec. 3-4 in Tampa, FL, just after the release of a draft request. Back in early 2012 AAI displaced ScanEagle as the incumbent. Did we mention we’re paid by the acronym here at DID?

  • The US Army’s Program Executive Office for Simulation, Training and Instrumentation (PEO STRI) will hold an industry day [FBO] on October 21 in Orlando, FL to discuss a potential new effort in the $50M-$100M range to acquire medical training equipment.

  • We’re running our annual survey, please help us know our audience better and tell us how we can improve.

  • Some comfort for defense contractors facing natural demographic workforce declines, and fiercer recruitment competition from firms in the technology and energy sectors: too much top talent can hurt [Scientific American] team performance in complex-cooperative endeavors.

  • One area where defense firms might have an edge? Recruiting veterans trained to teamwork, with skills other firms don’t understand as well. Just remember, modern veterans know what is. Read your pages and implement fixes, or fall behind within your cohort.

US Defense Regulations

  • The US Army updated its regulation 700-127 [PDF] on integrated product support, with a focus on performance-based logistics. This will be effective from November 7.

  • The Pentagon issued a final rule [PDF] to amend its acquisition regulation on specialty metals, among other things to clarify – that’s their actual operative word – that the “minimal content exception does not apply to specialty metals contained in high-performance magnets.” And DARPA still won’t admit to their classified breeding program to develop lawyers who can stand that stuff. They probably call it the Lethal Extended Training to Harness Abstruse Legalese (LETHAL).

You Want Help Or Not?

  • Special Forces sent by Australia to help Iraq are stuck in the UAE [News Ltd] waiting for legal clearance from Baghdad. German advisers were also recently delayed by several days before they could make it to Iraq.

Fusing Fusion Scientists

  • Lockheed Martin is talking up the Skunk Works’ Compact Fusion Reactor project, because they’re hitting a point where they’ll need partners for materials science and some technologies. They see a real possibility for “T4″ to become a container-sized prototype in 10 years, thanks largely to new approaches that substantially improve beta (safe pressure for the plasma per confining magnetic pressure). Beta x20 = power x10 = size 1/10, or so the theory goes. They’ll figure this out sooner than they’ll find a single kid who says he wants to be a defense acquisition lawyer when he grows up. Press Release | AvWeek.

Smoother Ride

  • Today’s video, shot by Stars & Stripes at the AUSA tradeshow, shows an independent suspension developed to make FTMVs more comfortable on rough roads:

Categories: News

Abuelo Hercules: Latin American Programs

Wed, 10/15/2014 - 16:36
Argentine C-130s
(click to view full)

Latin American air forces operate a wide variety of equipment, but American aircraft still play a prominent role. Some are new, but as one might expect in a region with constrained military budgets, many air forces are flying aging legacies of past purchases. They must be replaced at some point, and Brazil’s industry is making steady inroads on that basis, selling EMB-314 Super Tucanos to replace American OA-37 Dragonflys, and gearing up to replace American C-130 Hercules aircraft with Embraer’s KC-390.

Even with longer-term replacements afoot, however, the mathematics of force numbers and budget numbers continue to make upgrades, life extension programs, and second-hand transfers attractive. Recent announcements of C-130 projects in Argentina and Peru show that dynamic in action.

Contracts & Key Events Competition: KC-390
(click to view full)

Oct 14/14: Argentina. L-3 Communications Integrated Systems LP in Waco, TX receives a maximum $68.9 million unfinalized contract to modify 5 Argentinian C-130s. They will standardize all 5 planes to the same equipment, remove obsolete parts, and upgrade their CNS/ATM avionics per the Oct 19/11 DSCA request.

Note that Argentina has not abandoned their pursuit of the KC-390; indeed, they recently opened a production line for KC-390 parts. They do need their C-130Hs to last long enough for the KC-390s to arrive.

Work will be performed at Waco, TX, and Cordoba, Argentina, and is expected to be complete by May 31/19. USAF Life Cycle Management Center at Robins AFB, GA manages the contract on behalf of their Argentinian FMS client (FA8553-15-C-0003).

Argentina upgrades

Nov 8/11: Peru C-130Es. The US Defense Security Cooperation Agency announces Peru’s official request for 2 refurbished and upgraded C-130E Hercules medium tactical transport aircraft. The USAF is working to phase the C-130E out, and the 2 planes are being provided as Excess Defense Articles (grant EDA notification submitted separately), which means almost all of the cost involves refurbishment and services. Services include aircraft ferrying, spare and repair parts, support equipment, personnel training and training equipment, publications and technical data, and other U.S. Government and contractor support.

Peru currently flies 2 L-100-20 civilian stretched C-130E equivalents, with another 3 reportedly in storage. Adding these 2 refurbished C-130Es will keep their medium tactical transport options alive, as an option that fits in between the FAP’s 737 for more standard carriage, and its AN-32B light tactical transports. Deliveries of 12 more DHC-6 Twin Otter light utility transports are adding a very useful capability at the low end, but a heavier option is also needed. The DSCA’s official rationale for the C-130E sale includes this:

“This proposed sale will enable the Peruvian Air Force to modernize its aging aircraft and enhance its capacity to support humanitarian efforts in the region. Peru occupies a strategic location in South America, and the sale of refurbishment support for its EDA grant C-130 aircraft will improve Peru’s efforts in conducting maritime interdiction operations, improve its ability to execute counter-narcotics and counterterrorism capabilities, and ensure Peru’s overall ability to maintain the integrity of its borders. Additionally, this transfer will enhance the Peruvian Military’s ability to support to Humanitarian Assistance and Disaster Relief (HA/DR) efforts.”

The estimated cost is $74 million, but there is no prime contractor yet. While the C-130s are a Lockheed Martin aircraft, a global cottage industry has sprung up to perform refurbishments and life extension work on them. Peru will have a number of choices, as they decide whom to work with.

DSCA request: Peru (2 C-130E)

US C-130 AMP
(click to view larger)

Oct 19/11: Argentine upgrades. The US Defense Security Cooperation Agency announces Argentina’s official request to buy commercial-off-the-shelf avionics upgrades for 1 C-130E and 4 C-130H aircraft, as part of Argentina’s goal of keeping them in service to 2040, and in compliance with CNS/ATM (Communications, Navigation and Surveillance; and global Air Traffic Management) requirements. Argentina has signed an MoU with Brazil for the KC-390, which is a direct competitor.

That means a new digital cockpit and avionics system with Head-Up Displays, which is compatible with night vision, aerial refueling, and mild Antarctic operations down to -45C. They’ll also want minor Class IV modifications, ground handling equipment, repair and return, spare and repair parts, support equipment, publications and technical documentation, tools and test equipment, personnel training and training equipment, programmed depot maintenance, and other U.S. Government and contractor support.

Argentina is also buying with an eye toward broader roles for its C-130H+ fleet, in a move that appears to be just one part of a larger project. They’re asking for open software and hardware interfaces “…to allow future avionics’ upgrades such as defensive systems, HUD and FLIR (Forward Looking Infrared)… [and] future integration of systems, weapons [emphasis DID's, vid. US Harvest Hawk kits], or specific requirements, without replacing the Line Replaceable Units (LRU’s [sic]) or Line Replaceable Modules (LRM’s [sic]).”

DSCA request: Argentina upgrades

The DSCA announcement and accompanying RFI show that at the very least, Argentina is considering a “Plan B” for its future fleet vs. Embraer’s KC-390, which wouldn’t arrive for several more years, even if a contract was signed tomorrow. That KC-390 delivery timing also makes the C-130s attractive as a bridge that keeps AAF medium airlift available past 2015, when global air traffic rules are set to change.

The estimated cost is up to $166 million, but the prime contractor isn’t established yet. The DSCA adds that Implementation of this proposed sale will require the temporary assignment of approximately 2 government contractors, and about 48 industry contractors, to Argentina. That last stipulation, the stated 2040 in-service goal, and the RFI’s stipulation that avionics installation will be conducted in Cordoba, strongly suggest that the seized and now state-owned FADEA SA (formerly Lockheed Martin Aircraft Argentina) will be conducting a parallel program of structural rebuilds on these planes, in order to give them enough safe flight hours to last until 2040. US DSCA [PDF] | RFI.

Additional Readings

C-130s currently fly in many Latin American air forces: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Honduras, Peru, and Uruguay. Venezuela has C-130s, but the spares situation with the USA, and fleet status, are not clear to DID.

Categories: News

Coalition of the Half-Heartedly Willing Meets to Discuss ISIS

Wed, 10/15/2014 - 16:02

Built to Compete?

  • The CSIS think tank looks at [PDF] the quality and intensity of competition for US defense contracts under Better Buying Power. There are wide discrepancies among the services and depending on whether goods or services are procured.

  • DID is running its annual readership survey. Have we delivered Better Reading Power 2.0? Let us know.


  • The Diplomat reviews the dynamics of the Japanese-Vietnamese security relationship. You have to give it to the Chinese that they’re good at bringing other people together.

Bitcoin Primer

  • Cryptocurrencies are interesting to intel for reasons beyond concerns about who will use them. Information regarding who does use them is also a valid data point, and sometimes breaks into overt events – like Russia’s recent move to ban them [RT] after becoming their #2 market [Coin Telegraph], ahead of China.

  • To get an in-depth view, and see a very different model for Senate hearings while you’re at it, check out a recent Canadian Senate hearing involving Andreas Antonopoulos in the following video. Antonopoulos is a very strong proponent. Watchers may disagree, but he’s a widely recognized guru who presents the argument at its strongest:

Categories: News

A Russian Riddle: Procurement Policies Explained

Tue, 10/14/2014 - 20:36
RFS Steregushchy
(click to view full)

Our reader survey is in your email box, and we really want to hear from you because we have great readers. Back on Sept 18/14, Daily Rapid Fire said:

“Russian Prime Minister Medvedev gave government backing [Moscow Times] to loans meant to finance the fulfillment of government orders by defense contractors such as MiG. We wrote that sentence and can’t make sense of it either. Do they mean that until that announcement the Russian government may not have paid for what it had ordered?”

Enter DID subscriber Iouri Synogatch to say yes, it does mean what we thought it said. But there’s also more to the story…

MiG-29K flight test
(click to view full)

“In the past the MoD paid for orders upon delivery. This forced manufacturers to take loans, to cover production costs, which they would repay after receiving their MoD contract payment upon delivery. This often resulted in them losing money on the interest rates. It also left them in a bad place, if the MoD rethought the order, or delayed payment for some reason. In some cases even the inflation on costs of materials and labor ate their loan money, leaving them with a net loss on the product, upon delivery. However starting in the Serdyukov era, they have slowly been moving over to advance financing of the purchase, at the production stage.

This is not at 100% yet. So Medvedev is talking about government funds being used to make sure the industrial enterprises that still take out loans to pay for production costs, are able to get those loans at a reasonable rate. This will probably mean state banks providing the loans at better then market rates.

Interestingly enough, [the new defense minister] Shoygu has been pushing for a move away from advance financing… for certain projects, like military housing. He says that it puts the government in a vulnerable position if the construction company, for example, is late handing over the facility, or suddenly runs out of funds due to inefficiency, and demands more money to finish it.”

Professional readers who can offer insights like this are a privilege to have, and to keep. We try, every day, to be worthy of that privilege.

Categories: News

JAGM: Joint Air-Ground Missile Again

Tue, 10/14/2014 - 16:45
JAGM infographic
(click to view full)

The AGM-114 Hellfire missile remains a mainstay for the US military and its allies around the world, and efforts to replace it have repeatedly stalled. The Joint Common Missile (JCM) was meant to offer new guidance options, and use on fast jets as well as helicopters and UAVs. It performed well, but was canceled. It returned from the procurement dead as JAGM, a program that has undergone several major changes within itself. While other air forces field fast-jet solutions like MBDA’s Brimstone, JAGM will initially be limited to helicopters and UAVs, as a dual-mode guidance upgrade to current model Hellfire missiles…

The JAGM Program Timeline Hellfire II: what’s next?
(click to view full)

Oddly, the problems faced by Hellfire’s JCM and JAGM successors have been largely unrelated to cost or performance. Rather, the programs kept getting cut to pay for other things. The Hellfires were seen as good enough to equip American helicopters and large UAVs like the Predator. To compete, new entrants had to fit into a new category. Smaller guided 70mm rockets gained a foothold because more of them could be carried in the same space, while small multi-mode glide bombs found a niche in being launched from the back ramps of cargo aircraft.

After enough missile cancellations and resurrections to make even Lazarus give up, the US Army has decided to try squaring this circle using an incremental approach. The JAGM Continued Technology Development phase now aims to create dual-mode laser/radar guidance sections that can equip existing Hellfire II missiles. Essentially, JAGM Increment 1 would create a Hellfire III missile with dual-mode guidance, matched to the AGM-114R’s multi-role warhead and rocket. Budgets to date have included:

If JAGM can be delivered to the required cost targets, JAGM may add the originally-planned tri-mode (imaging infrared + semi-active laser + millimeter wave radar) guidance set, and interest may revive for new rocket motor technology that would allow reliable use from fighter jets. Those kinds of advances sit beyond the current timeline, however:

Scope and Scale F-16 fires Maverick

JAGM’s scope is much reduced, but it could expand again. The original Joint Common Missile (JCM) was seen as the next-generation, multi-purpose, air-to-ground precision missile that will replace AGM-114 Hellfire family, AGM-65 Maverick family, and airborne xGM-71 TOW missiles with a single weapon usable by the airplanes, helicopters and UAVs of the US Army, Navy, and Marine Corps. It was also being considered for use on some ground vehicles, and had naval potential.

In contrast, early versions of JAGM can’t replace the Mavericks. Until at least 2019, they’ll be limited to US Army AH-64 Apache attack helicopters and MQ-1C Gray Eagle UAVs, and USMC AH-1Z attack helicopters. USMC UH-1Ys and USN MH-60s can expect eventual integration at some point, since AGM-114 Hellfire deliveries are set to end in 2017.

The next big win for JAGM after that would involve vehicle-mounted solutions; fast jet use is possible, but it would add costs due to the required missile and rocket redesigns, and customer demand is low. The US Navy expects to follow the AGM-65 Mavericks on its jets with small GBU-53 SDB-II glide bombs, carrying a tri-mode IIR/laser/MMW radar seeker that may yet see derivative use in JAGM. The USAF will be doing likewise, instead of turning to JAGM or to similar fast jet missiles like MBDA’s Brimstone.

The original JCM had a goal of 54,000 missiles. JAGM was revised lower, and a 2010 GAO document estimated JAGM’s total 20-year program cost at about $6.4 billion: $1.64 billion for Research, Development, Test and Evaluation; and $4.74 billion to build 33,853 missiles. As of November 2011, the totals had reached reached $6.88 billion for 35,422 missiles.

Then the FY13 budget came in, grinding the program to a near halt as the Navy left. The program was restructured, and the USMC returned to the program in time for the FY15 budget submission. If the US Army and Navy have total program numbers for JAGM, they aren’t disclosing them in recent documents.

JAGM’s External Competition Brimstones on GR4s
(click to view full)

While the JCM/ JAGM program has churned specifications and burned time, a different program has already produced an interesting competitor with many of the same specifications, and some of the flexibility.

AGM-114P/R Hellfire missiles are now qualified for use at high-altitudes on UAVs like the MQ-9 Reaper, but they’re not a solution for fixed-wing jets, and range limitations make Hellfire dangerous to use against even short-range air defenses.

MBDA’s Brimstone solves those problems. It has been integrated with Britain’s Royal Air Force Tornado GR4 strike aircraft and Harrier GR9 jump-jets, and is slated to add the Eurofighter Typhoon to that list. The Brimstone’s first combat use came in 2011 over Libya, where its man-in-the-loop option and attack profiles made it one of the few weapons that NATO commanders could use to attack enemy armor in urban areas.

With combat credentials and a significant head start, MBDA can be expected to make more market inroads. Nor is MBDA resting on its technical laurels. Their SPEAR project for Britain’s Complex Weapons program aims to take the Brimstone’s warhead and guidance, and mount it on a larger missile with a range of 75 – 100 km. SPEAR will be mounted in multiples on external hardpoints, or carried inside the weapons bay of Britain’s forthcoming F-35Bs.

As a less direct form of competition, existing market alternatives have also flourished in JAGM’s absence. Raytheon, for instance, has re-started production of their laser-guided Maverick for fixed-wing aircraft in 2009, in response to urgent requests.

Contracts and Key Events

The JAGM program will be managed by the U.S. Army’s Aviation and Missile Command in Redstone Arsenal, AL.

FY 2013 – 2014

USMC back in the program; Raytheon out of CTD; Brimstone for MQ-9 Reaper UAVs? JAGM Inc 1
(click to view full)

Oct 13/14: Lockheed Martin is preparing its expected JAGM bid with the current dual-mode laser/radar seeker, following successful tests.

Raytheon, whose solution was dropped at the same time as JAGM dropped to a dual-guidance mode because of funding shortfalls (q.v. July 18/13) is deciding whether to bid at all. If they do bid, they’re going to stick to their original plan and use the same tri-mode laser/IIR/radar seeker from the GBU-53 Small Diameter Bomb II. It’s a reasonable hedge against perceived risk, offering more capability for the same dollars. Of course, the level of perceived risk could be far more even if both designs had been funded through development.

Given the likely scope of future JAGM orders, and the tiny fraction of the procurement budget involved in JAGM development, there’s a legitimate policy question here re: the responsibility of the Pentagon to promote competitive tenders for significant weapon systems. Sources: Aviation Week, “Lockheed Martin Preparing JAGM Bid; Raytheon Unsure”.


“The U.S. Army Contracting Command – Redstone (ACC-R) intends to issue a Draft Request for Proposal (DRFP), W31P4Q-14-R-0107, for the purpose of supporting a full and open competitive procurement to fulfill the requirements for the Joint Air to Ground Missile (JAGM) Engineering and Manufacturing Development (EMD) phase with options for Low Rate Initial Production (LRIP)…. The JAMS project office plans to host a Pre-proposal Industry Day sometime in the June 2014 timeframe to present general unclassified information on the U.S. Army’s projected procurement strategy of the JAGM and the Army’s vision…”

March 4-11/14: Budgets. The US military slowly files its budget documents, detailing planned spending from FY 2014 – 2019. According to those documents, AGM-114 Hellfire orders stop in FY 2015 (USAF), and the last Hellfires will be delivered in April 2017. The Army’s documentation says nothing about JAGM production, except that the Milestone C decision for low-rate production is expected in Q2 FY17:

“The Army has depended on Overseas Contingency Operations (OCO) funding to replenish [AGM-114] stocks since FY 2008. The Army continues to evaluate the transition strategy from HELLFIRE to Joint Air to Ground Missile (JAGM).”

Meanwhile, Navy documents indicate that they’re back in the program. They show JAGM integration on AH-1Z helicopters beginning in FY15, and orders beginning in FY19. JAGM will be re-using most of the AGM-114R Hellfire, which is already integrated on the AH-1Z, but Navy helicopters are used to the video interface that JAGM won’t have, and don’t typically carry fire-control radars. So, some changes will be necessary.

Feb 20/14: Lockheed Martin announces that its JAGM dual-mode guidance section has flown on a Hellfire missile and hit a moving laser-designated target. The missile was fired from 6km during an internally funded flight test at Eglin AFB, FL. Essentially, the missile acted like a normal Hellfire. Tests of the seeker in dual-mode are coming.

In a briefing, Lockheed Martin gives JAGM’s range as 8 km, whether launched low or high with its boost-only motor. The M299 launcher interface has a few changes from the basic Hellfire, and hews to the radar-guided AGM-114L Hellfire Longbow missile’s serial interface instead of a video interface. Otherwise, JAGM is basically an AGM-114R Hellfire missile with a new guidance section. System qualification is expected in Q4 2014, and JAGM will be integrated with the Army’s AH-64 Apache attack helicopters and MQ-1C Gray Eagle UAVs. Sources: LMCO, “Lockheed Martin Demonstrates JAGM Dual-Mode Guidance Section in Recent Flight Test” | JAGM Media Briefing with LMCO VP Tactical Missiles/Combat Maneuver Systems Frank St. John.

July 18/13: LMCO only. IHS Jane’s, “US Army to move ahead with Lockheed Martin JAGM”:

“The US Army will not award Raytheon Missile Systems a contract for the remainder of the Technology Development (TD) phase of the Joint Air-to-Ground Missile (JAGM)…. [but will] continue to execute the Lockheed Martin contract through the remainder of the TD phase, US Army Colonel James Romero, the project manager for the Joint Attack Munitions Systems, told IHS Jane’s during a 17 July interview at the Pentagon.

“A [$36 million] funding shortfall was the primary catalyst for the decision,” Col Romero said.”

JAGM is also being scaled back to a dual-mode MMW radar/ laser seeker at first. Raytheon and Boeing’s tri-mode guidance solution is already developed for the SDB-II bomb, so they remain in a position to compete for JAGM production orders if the US military wants to hold a competitive buy when the time comes.

TD now Lockheed Martin only

May 3/13: Brimstone for Reapers? With JAGM fielding still some way off, if ever, the USAF’s 645th Aeronautical Systems Group rapid acquisition office is reportedly interested in adding MBDA’s longer-range, dual laser/ MW radar guided Brimstone missile to the MQ-9’s arsenal. It’s real attraction is a ‘man in the loop’ feature that lets the firing aircraft abort an attack after launch, or correct a missile that locks on the wrong target. In Libya, those characteristics reportedly made it one of the few weapons NATO commanders could use to hit enemy armored vehicles in urban areas.

Brimstone already serves on RAF Tornado GR4 strike jets, and was an option for Britain’s Harrier GR9s before the entire fleet was sold to the US Marines. With Britain’s MQ-9s deployed, they’ve reportedly asked for tests using USAF MQ-9s, and also hope to interest American armed services in the weapon. Defense News | Defense Update.

April 10/13: FY 2014 Budget. The President releases a proposed budget at last, the latest in modern memory. The Senate and House were already working on budgets in his absence, but the Pentagon’s submission is actually important to proceedings going forward. See ongoing DID coverage. For JAGM, there isn’t a lot of near-term funding, and there are a lot of milestones to hit on the way to funding it as a Hellfire upgrade beginning around 2017. Budget figures to 2018 are compiled above.

R/B JAGM pre-test
(click to view full)

Dec 11/12: CTD. Raytheon Missile Systems in Tucson, AZ receives a “$10 million” firm-fixed-price contract for JAGM’s continued technology development. Work will be performed in Tucson, AZ with an estimated completion date of March 31/13. One bid was solicited, with 1 bid received (W31P4Q-13-C-0080). It appears to have taken longer than expected (vid. Aug 17/12 entry), but Raytheon has its CTD contract.

Raytheon’s Dec 3/12 release places the total value of both CTD phases at $65 million, just like Lockheed Martin. During the next 4 months, Raytheon will update its design and complete a delta (design changes) Preliminary Design Review. During the next 24 months, the team will focus on a Critical Design Review, guidance section qualification and testing, and delivery of JAGM guidance sections. The CTD phase will culminate with the US Army integrating Raytheon JAGM guidance sections to Hellfire missiles. Based on current schedules, Raytheon’s SDB II tri-mode seeker will be in its 2nd year of production by the time JAGM CTD concludes.

JAGM CTD contract

FY 2012

Lockheed Martin CTD. Navy out. LMCO on JAGM
click for video

Aug 17/12: CTD. Lockheed Martin Missiles & Fire Control in Orlando, FL announces a $64 million extended technology development contract from the US Army, in order to keep the JAGM program one notch above dead. The Pentagon follows with an Aug 27/12 announcement for $32 million to continue developing the seeker & guidance unit, but “50% award announcements” are common, and Lockheed Martin’s figure remains authoritative.

Work will be performed in Orlando, FL, with an estimated completion date of Nov 28/14. Two bids were solicited, with 2 bids received (W31P4Q-12-C-0003).

Observant readers may notice that $64 million is about half of the $127 million the GAO was talking about for FY 2012 (vid. March 29/12 entry). Raytheon’s head of JAGM business development, J.R. Smith, says that their own CTD contract is currently in negotiation, and expected within the next several weeks.

JAGM CTD contract

May 31/12: A March 2012 presolicitation from the US Navy for JAGM integration on F/A-18E/F aircraft may have sent mixed signals, but its cancellation confirms the Navy’s intent.

March 29/12: GAO report. In its 2012 Selected Weapons Program assessment report, the GAO underlines the uncertain nature of JAGM’s future – not quite cancelled but close. It notes that Hellfires have been working well in theater, weakening the case for an expensive replacement.

According to the GAO, $127M in funding for the current fiscal year will allow a 27-month extension of the technology development phase to hopefully address affordability issues and reduce risk. The Pentagon’s comptroller sizes up the savings from stalling on JAGM at $300M in FY2013 and a total of $1.6B over the FYDP.

March 20/12: I’m Still Alive. Frank Kendall, undersecretary for acquisition, technology, and logistics, signs an Acquisition Decision Memorandum, granting new life to the JAGM program. Meanwhile, the Army has produced a JAGM affordability study, and provided it to the 2 teams. Can JAGM rise again, perhaps as the Joint Effects Strike Unified Sensors missile?

Raytheon’s head of JAGM business development, J.R. Smith, says that he believes there’s about $300 million in prior-year funding left over from FY 2011-12, which can be used to keep the program running. If this feels like a rerun, that’s because it is, as the Dec 30/05 entry shows. AOL Defense.

ADM survival

Feb 2012: Navy out. In the FY2013 Presidential Request, the US Navy estimates it is a “manageable risk to terminate the Navy’s and USMC’s investment in the JAGM program,” choosing to invest instead in SDB II and continued Hellfire procurement.

Unless this decision changes, it makes JAGM an Army-only program. DID therefore humbly suggests rebranding the program as AAGM, or possibly AAHAAGMM given the “living dead” JCM/JAGM history so far.

Navy/USMC out

FY 2011

Analysis of Alternatives. Industry tests. Raytheon/ Boeing JAGM
(click to view full)

Aug 2011: JAGM AoA. The program office submits its Analysis of Alternatives, defending JAGM as a cost-effective solution. They will probably have to fight hard to make that case.

June 7/11: Testing. Lockheed Martin touts company-funded trials of a JAGM seeker mounted in a Sabreliner 60 executive jet flying at 20,000 feet, which was used to track small, fast naval targets in the Gulf of Mexico near Eglin AFB, FL. Targets included a Revenge Advanced Composites (RAC) state-of-the-art, low-signature, high-speed patrol craft performing evasive maneuvers.

The test was designed to highlight robust mid-wave infrared performance, fixed wing performance, high humidity performance, effectiveness against a challenging low-signature target, and EMD readiness – since captive flight isn’t required until the next stage.

June 6/11: Bids in. Deadline day for the JAGM RFP, and both Team Lockheed and Team Raytheon submit their bids. A single contract award for the program’s Engineering & Manufacturing Development (EMD) phase is expected during Q4 (summer) 2011. Lockheed Martin | Raytheon.

RFP bids

May 2/11: Testing. The Raytheon/ Boeing team follows up their Oct 23/10 firing, and completes the series of government-funded JAGM tests. The latest firing uses the new rocket motor, but only after subjecting it to thermal cycling from -45F to 160F degrees.

The test was whether the new motor would still work after 5-20 cycles of that treatment. It did, and Raytheon VP Advanced Missiles and Unmanned Systems Bob Francois gets to point out that “Every single test of the Raytheon-Boeing JAGM has been an unqualified success, even those using EMD motors.”

April 13/11: The US Army Aviation and Missile Command issues its JAGM Engineering and Manufacturing (EMD) and Low-Rate Initial Production (LRIP) Request for Proposals. The scope of the JAGM EMD contract will be to “complete all major component and subsystem critical design reviews (CDRs), a system-level CDR, component and subsystem testing, design verification testing, engineering development tests and production prove-out tests on the six threshold JAGM platforms.” In addition to the EMD requirements, the RFP calls for 3 fixed-price LRIP production lot options, as well as 2 fixed-priced advance procurement clauses for long lead time components.

Lockheed Martin’s team and the Raytheon-Boeing team both formally announce their intent to bid; at this point,a contract is expected in Q3 of FY 2011.


March 21/11: Test equipment. US NAWCWD announces its intent to hand WINTEC, Inc. of Walton Beach, FL a contract for 5 M299/310 Launcher and Missile Emulator (LME) systems, Part Number JLE00010-4. The LMEs are existing Special Test Equipment used to support the integration, test, and verification of Launchers and missiles at the MIL-STD-1760 interface to host platforms. The LMEs have traditionally been used for AGM-114 Hellfires, but new launcher models/simulations and missile model/simulations have been added, to support the JAGM program objectives for planned laboratory and platform integration testing.

The sole source award is being done in accordance with FAR 6.302-1. Anticipated award is May 2011.

March 7/11: US FedBizOpps notice #N00019-09-P2-PC041:

“The Naval Air Systems Command (NAVAIR) intends to issue a Cost Plus Fixed Fee Order under NAVAIR Basic Ordering Agreement (BOA) N00019-11-G-0001 for the engineering services of hardware integration analysis, wind tunnel tests, ground tests, flight test planning, aircraft/weapon system integration and instrumentation, ground and flight test technology support, data reduction, documentation, and reporting requirements for integration of the Prototype Joint Air to Ground Missile (JAGM) Systems on F/A-18E/F aircraft. NAVAIR intends to negotiate this Order on a sole source basis with McDonnell Douglas Corporation (MDC), A Wholly Owned Subsidiary of the Boeing Company, St. Louis, MO 63166-0516. MDC is the sole designer, developer, manufacturer and supplier of the F/A-18 Weapon System and MDC is the only known source capable of performing this effort within the required time frame.”

Feb 8/11: JAGM pre-solicitation #W31P4Q-11-Q-0006 issued:

“The Government plans to issue separate Request For Quotations (RFQ) W31P4Q-11-Q-0006 and RFQ) W31P4Q-11-Q-0007 to Lockheed Martin Missile Systems and Raytheon Missile Systems repectively [sic] to provide input, advice, and recommendations regarding JAGM System Engineering integrated product team activities… Solicitation from any other source is not feasible because only the recommendations and input from the two existing JAGM TD prime contractors Lockheed Martin Missile Systems and Raytheon Missile Systems can fulfill Government needs.”

Jan 3/11: Testing. Lockheed Martin has had some issues with its JAGM design so far, but continues to push to get where they want to be by the time a winner is picked. They announce successful flight tests aboard a Super Hornet from Oct 5/10 – Nov 2/10. This was a test of the missiles’ ability to handle conditions at various altitudes and speeds, as well as a test of the aerodynamic consequences of mounting the Lockheed Martin/ Marvin engineering JAGM triple rail at various points, with various load-outs.

Oct 23/10: Testing – rocket. A Raytheon/Boeing funded test fires a JAGM prototype equipped with the new Boeing-ATK rocket motor, which would be used on their production missile. The test is successful in collecting data to update the missile’s flight and simulation software, and allows the team to advance to engineering and manufacturing development (EMD) and a Preliminary Design Review.

This is the team’s 6th missile test, and the 3rd privately-funded test. All tests to date have met their objectives. Raytheon.

Oct 15/10: Testing. DoD Buzz reports that Raytheon isn’t using a production version of the JAGM missile in its firing tests, just the seeker. Raytheon replies that the tests’ terms are aimed at the seeker, and do not require production-ready missiles. DoD Buzz must concede the point:

“Here is what the RFP says: “The fly-off missile prototypes will represent PDR(Preliminary Design Review) level configurations using a Warhead Replacement Telemetry Unit. It will include a series of Tactical Missile Air-gun and/or Rail Test Firings with a Warhead integrated into a non-functional Tactical Missile to gain insight into Warhead /Fuze functioning.”

Lockheed Martin says that their JAGM test missiles have all been production ready configurations – but that will only help them in the short term if failings in their test firings are traceable to their missile design, rather than their seekers. Meanwhile, Raytheon & Boeing will continue component and higher-level testing of their missile design.

FY 2010

Preliminary Design Review. JAGM test (loud!)
click to play video

Sept 10/10: Testing fail. DoD Buzz reports that the cause of Lockheed Martin’s missile failure in its second test-firing was a bracket that holds one of the rocket motors. Unfortunately, they’re going to have to delve into more root cause analysis, because…

“The day before the deadline for official government testing, Lockheed Martin’s Joint Air To Ground Missile prototype missed the target, leaving the defense giant with two misses out of three in the competition for the $5 billion program. Raytheon struck the target on its third test, a company source said, giving them their third successful shot of three.”

That doesn’t end the team’s chances, it just means that further firing tests would have to come out of Lockheed Martin’s pocket, as the team moves toward its final submission model. Given the huge future stakes involved, there’s no doubt that Lockheed Martin will finance any tests required.

Sept 1/10: Testing. Raytheon announces success in the 2nd of 3 government-sponsored JAGM firings. Their missile used its uncooled imaging infrared (IIR) guidance system to hit an armored vehicle target at 4 kilometers/ 2.5 miles. During the most recent test, all three guidance systems operated simultaneously and provided telemetry data that enabled engineers to conduct further analysis of the weapon. The test is significant, because Lockheed Martin’s matching test was an overshoot, and Raytheon’s uncooled IIR sensor s generally seen as a tradeoff between lower cost and maintenance, in exchange for lower performance.

This is actually the Boeing/Raytheon team’s 4th test firing, as the team funded 2 of its own tests in April 2010.

Aug 16/10: Lockheed PDR. Lockheed Martin and teammates Marvin Engineering and Aerojet announce successful JAGM component and system Preliminary Design Reviews (PDRs). The team completed PDRs on Aerojet’s JAGM propulsion solution, which uses Roxel UK’s minimum-smoke propellant grain, and on launchers that included the U.S. Navy’s quad-missile helicopter (AH-1Z, MH-60R) and tri-missile fixed-wing (F/A-18 E/F Super Hornet) launchers. The team continues to increase the severity of environmental testing in preparation for engineering manufacturing development. Lockheed Martin.

Aug 9/10: SDB-II win. Raytheon wins the SDB-II competition against Boeing and Lockheed Martin, and cites its tri-mode seeker as a key reason. It remains to be seen whether their use of the same seeker for JAGM proves helpful.

Aug 6/10: Testing. DoD Buzz gets information from Lockheed and Raytheon concerning their manufacturer-financed test shots to date.

To date, Lockheed Martin has had 2 flight readiness checks in June & July. A Lockheed-funded check had a pre-launch malfunction. A government-funded check failed when range instruments malfunctioned, but that missile was later used on Aug 2/10 for a successful test shot at White Sands Missile Range, NM. The Aug 2/10 laser-guided shot tested the tri-mode seeker, but used the laser for targeting, and scored a direct hit from 16km. An Aug 3/10 IIR test against a tank target at 4km led to an overshoot. Team Lockheed says they’re confident they’ll have their 3 successful tests by the deadline.

Raytheon paid for 2 missile test shots in April 2010 to see if they were on the right path, and met their objectives. Their next test shot on June 23/10 tested the tri-mode seeker, but used the laser for targeting, and scored a direct ht from 16km. A 4th test shot is scheduled for Aug 13/10.

July 26/10: Testing. The Raytheon-Boeing team announces that their JAGM design has successfully completed the 1st of 3 government-sponsored firings, using its laser guidance system to hit an 8×8-foot target board from a distance of 10 miles/ 16 km. All 3 guidance modes were used during the flight for telemetry data, but the laser was used to final targeting. This is actually the 3rd test firing of their design, following 2 company funded tests in April 2010.

May 5/10: Testing. Raytheon announces that their partnership has completed wind tunnel testing of the Joint Air-to-Ground Missile from the F/A-18 E/F Super Hornet.

May 5/10: Testing. Lockheed Martin announces a successful end to JAGM wind tunnel tests involving the Navy’s F/A-18 E/F Super Hornet jet fighter.

The more than 200 hours of initial high-speed flying qualities wind tunnel tests were conducted at NASA’s Ames Research Center in Moffett Field, CA. The goal was to ensure minimal changes to the fighter’s handling characteristics with the missiles on board. After that, tests moved to 150 hours of work at the Arnold Engineering Development Center (AEDC) wind tunnel in Tullahoma, TN. Those tests further refined the structural requirements of the launcher and JAGM, and included safe launch and separation tests involving Lockheed Martin and Marvin Engineering’s triple-rail JAGM launcher. A final set of tests at the Boeing Vertol wind tunnel in Philadelphia, PA, demonstrated and validated low-speed flight characteristics of the Super Hornet when loaded with JAGM.

April 20/10: Testing. Raytheon/Boeing team announce the 1st successful test of its Joint Air-to-Ground Missile at White Sands Missile Range in New Mexico. The weapon, fired from a ground-based rotary-wing launcher, reportedly performed a series of preprogrammed maneuvers and flew to a predesignated location, validating the flight control software and Brimstone airframe. Raytheon-Boeing release

April 13/10: Testing. Lockheed Martin concludes a series of static, tower-based and captive-carry flight tests of its tri-mode JAGM seeker in a limited dirty battlefield/countermeasure rich environment at Redstone Arsenal, AL. The seeker was tested against both active and passive countermeasure systems including white and red phosphorous, fog oil, smoke, millimeter wave chaff, flares, camouflage netting and mobile camouflage systems.

This test series was preceded by an array of successful captive-carry tests conducted by Lockheed Martin in clean, non-dirty-battlefield flight environments, during both favorable and adverse weather conditions including sun, rain, freezing rain, sleet and snow. Hady Mourad, JAGM program director at Lockheed Martin Missiles and Fire Control, said that “the seeker performed precisely as designed.” Lockheed Martin release.

April 6/10: Testing – rocket. Lockheed Martin announces successful extreme temperature tests for its proposed JAGM rocket motor, developed in conjunction with Gencorp’s subsidiary Aerojet. The final completed tests were a series of cold temperature missile motor firings were conducted in Camden, AR, using the same rocket motor design planned for the tactical missile, with a composite motor case, with the system conditioned to -65F degrees in order to simulate high-altitude conditions.

The partners describe these tests as a “breakthrough,” which may not be an exaggeration. The rocket is one of the program’s most challenging technologies, because it has to do several things at once: smokeless/ low-smoke launch and flight, operation over a wide range of temperatures from searing deserts to extreme cold at fighter-jet altitudes, and a high enough turn-down ratio (flow variance from boost to sustain) to give the missile its required performance and range. The Raytheon/Boeing team is also working on this area, but their partner is ATK. Joint release: Lockheed Martin | Aerojet.

March 31/10: Testing. Lockheed Martin announces successful initial tests on the multi-mode seeker for its JAGM contender, demonstrating all of the sensor modes simultaneously. Program officials also recently held Kaizen events, or Structured Improvement Activity (SIA), to streamline the manufacturing process at Lockheed Martin’s seeker and electronics production facilities in Ocala, FL; and Troy, AL.

The Lockheed Team is a bit behind their competitors at this point. Upcoming captive-carry testing will verify performance in a flight environment, with thermal and vibration performance, and electromagnetic interference testing slated for later in 2010. Lockheed Martin release.

March 30/10: GAO Report. The US GAO audit office delivers its 8th annual “Defense Acquisitions: Assessments of Selected Weapon Programs report. With respect to the JAGM program, the GAO document is more an official fact sheet than an analysis, given the program’s early stages. Data from that document has been incorporated into this article.

The GAO adds that the program must also complete a “postpreliminary design review assessment” before it can be certified to enter engineering and manufacturing development.

Jan 29/10: Testing. Raytheon and Boeing announce the end of their captive flight tests for the Joint Air-to-Ground Missile competition, which test the missile’s ability to pick up targets, guidance, and ability to handle the stresses created by its platforms and their flight environments. The next step would be guided test shots.

Oct 6/09: Testing. Raytheon and Boeing announce that they’ve completed a series of captive-carry flight tests of their tri-mode JAGM seeker, within the same size dimensions as their planned JAGM missile. By demonstrating that the seeker fits, and will not be affected by the buffeting associated with carriage on a fast-moving aircraft, the way is clear for installation in prototype missiles and use in live firings.

Raytheon’s next-generation tri-mode seeker leverages technology used on their Small Diameter Bomb II (where Boeing is their main competitor) and the NLOS-LS/NETFIRES improved Precision Attack Missile.

FY 2009

TD contracts. Lockheed JAGM concept
(click to view full)

May 13/09: TD. Boeing subsidiary McDonnell Douglas Corp. in St. Louis, MO received a $7.4 million time and material delivery order against a previously issued Basic Ordering Agreement (N00019-05-G-0026) for wind tunnel testing of JAGM prototypes on their F/A-18E/F Super Hornet.

Work will be performed in St. Louis, MO (92%); and Philadelphia, PA (8%), and is expected to be complete in March 2011. About $5.8 million in contract funds will expire on Sept 30/09, at the end of the current fiscal year. The Naval Air Systems Command in Patuxent River, MD will manage this contract.

Oct 8/08: TD. Lockheed Martin announces and details its JAGM team.

Oct 2/08: TD. The US military announces the initial contracts under the JAGM program, within each contracting team’s limit per earlier entries. Bids were solicited via the Web, and 2 bids were received by the U.S. Army Aviation and Missile Command in Redstone Arsenal, AL.

Raytheon Co. in Tucson, AZ receives an $18.7 million fixed price incentive firm target contract, for 27 months of technology development for the Joint Air Ground Missile Program. Work will be performed in St. Louis, MO (Boeing) and Tucson, AZ (Raytheon) with an estimated completion date of Dec 31/10 (W31P4Q-08-C-A789).

Lockheed Martin Corp. in Orlando, FL received an $18.7 million fixed price incentive firm target contract, for 27 months of technology development for the Joint Air Ground Missile Program. Work will be performed in Orlando, FL; Ocala, FL; and Troy, AL, with an estimated completion date of Dec 31/10 (W31P4Q-08-C-A123).

FY 2008

Raytheon/Boeing and Lockheed Martin Technology Development. Boeing JCM
(click to view full)

Sept 22/08: The Raytheon / Boeing team announces a 27-month, $125 million Technology Development contract for the JAGM program. The contract funds a program to develop and fire 3 prototype missiles with fully integrated tri-mode seekers.

Sept 18/08: Lockheed Martin announces that it has won a 27-month, $122 million competitive risk-reduction phase for the Joint Air-to-Ground Missile (JAGM) system. Lockheed Martin Missiles and Fire Control VP Rick Edwards:

“Our extensive risk-reduction tests have significantly mitigated risk on the three critical subsystems [seeker, warhead, rocket motor], our software and simulations are mature and proven, and we have made significant strides in developing low-risk platform integration solutions.”

See also the Orlando Sentinel: “Lockheed’s $122M missile contract could create 200 jobs in Orlando area.”

JAGM TD contracts

April 14/08: Competition. Raytheon Company and Boeing announce a teaming agreement to pursue the U.S. Army-U.S. Navy Joint Air to Ground Missile program, which has an intended in-service date of 2016. Raytheon will be the prime contractor within the team, and the move is significant in that Boeing will not be teamed up with Northrop Grumman this time around.

Raytheon makes existing TOW and Maverick missiles, and the team-up with Boeing creates commonality on a different level: integration with the manufacturer of many USAF and Navy aircraft, an area that Lockheed Martin covers on its own. Boeing is also part of the MBDA-led team that developed the Brimstone missile, Britain’s answer to the JCM program. Raytheon release.

Feb/March 2008: JAGM RFP. JAGM RFP re-issued, for May 19/08 turn-in.

Up to FY 2007

Program start. JCM terminated. JCM

Sept 26/07: Jane’s Missiles & Rockets reports that:

“A new Joint Air-to-Ground Missile (JAGM) programme is expected to become the successor of the Lockheed Martin AGM-169 Joint Common Missile (JCM) programme. As with the JCM, the JAGM is to be a multiservice weapon able to replace all versions of the Lockheed Martin Hellfire, Raytheon Maverick and Raytheon TOW missiles that currently equip fixed-wing aircraft, helicopters and unmanned aerial vehicles in US service…”

September 2007: Original JAGM RFP rescinded.

June 17/07: Original draft of JAGM RFP issue.

June 15/07: JCM Terminated. Official termination of the Joint Common Missile program.

Feb 21/07: The Lexington Institute think-tank wades into the controversy with “Joint Common Missile: Why Argue With Success?“:

“Here’s a fantasy. Imagine three military services agreed on the need for a versatile air-to-ground missile that could precisely destroy a wide range of elusive targets — everything from camouflaged armored vehicles to terrorist speedboats. Imagine they found a low-cost design that could do those things day or night, good weather or bad, even when enemies were trying to jam the missile. Imagine the services selected a company that developed the missile on time and on cost, meeting all of its performance objectives. And imagine the missile was fielded expeditiously, replacing four cold-war missiles with an easy-to-maintain round that saved military lives while minimizing unintended damage.

You’d have to be pretty naive to believe the Pentagon’s dysfunctional acquisition system could deliver all that, wouldn’t you? That’s right, you would — because the military actually has a program matching that description, and senior officials have been trying to kill it for two years. Why? Well, nobody really knows why…”

Jan 26/07: Inside Defense, “Pentagon OKs Funding For Hellfire Replacement Effort”:

“The Pentagon comptroller has directed the Army and Navy to pony up $68.5 million to fund missile research and development in an account that could be used to revive the Joint Common Missile — or something like it — more than two years after the Office of the Secretary of Defense moved to terminate the program…”

Dec 30/05: Inside Defense reports that when US House and Senate conferees reconciled the details of the FY 2006 defense appropriations bill, they restored $30 million to the Army-led JCM program to continue the missile’s development ($26 million in research, development, test and evaluation funding from the Army, and $4 million from the Navy).

They have also required a report by Jan 30/06 explaining how the Pentagon plans to fill the future gaps created by the missile’s demise, and a cost analysis of continuation vs. termination and buying existing missiles. Depending on what that study says, the JCM program could rise again.

Appendix A: The JAGM Missile – Original Concept Technical Desires & Challenges Lockheed’s UAV pitch
click to play video

The stakes have always been very big for the JCM/JAGM. Pentagon planners expected that standardization from the TOW, Hellfire, and Maverick families of missiles to 1 variant of JAGM would keep maintenance and supply costs lower. Integration with the F-35 fighter family was possible in future, and so were international contracts if the missile makes it through development to become a program of record. In industrial terms, that made JAGM the last big American missile competition for some time. So the stakes were huge, the genesis was long, and progress remains slow because of budgetary pressure.

The US military was looking for a missile that’s about 110 Lbs, 70″ long, and 7″ in diameter, with a range of 0.5 – 16 km when fired from helicopters, and 2 – 28 km if fired from fixed wing aircraft. The seeker would be multi-mode: active designation via semi-active laser or millimeter wave radar will duplicate all Hellfire variants in a single variant, and a passive imaging infrared option would add additional insurance and versatility.

On the seeker side, the program isn’t actually breaking a lot of new technical ground. The various seeker modes requested (laser, IIR, radar) have all been implemented on other missiles, and Raytheon’s GBU-53 Small Diameter Bomb II has already pioneered an accepted tri-mode seeker. Performance enhancements are always possible, but this will be a matter of refinement and integration, rather than groundbreaking development.

Instead, the big challenges involved the missile and its propulsion system, which was envisioned as a single rocket motor solution to be used on all platforms. That meant it had to have minimum smoke, in order to avoid smoke inhalation by by helicopter engines or easy tracking of the missile’s origin. It would also need to handle a much wider temperature range than Hellfire, from the hottest desert sun beating down to nap-of-the-earth helicopters to the Antarctic-class temperatures at high fighter jet altitudes. Just to make things interesting, it also had to meet the Navy’s unique requirements for insensitive munitions, in order to be safe enough for use in naval combat.

After meeting all of those requirement, it had to deliver the requested missile range, which is almost 2x the advertised range for its AGM-114 Hellfire predecessor when fired from a similar platform. The ability to fire from fast jets would extend that range even further, which is extremely important against defended targets.

If the US military could get all that, it would have an extremely valuable weapon system.

The Road Less Taken – JCM/JAGM’s Program History Brimstone from Tornado
(click to view full)

In May 2004, Lockheed Martin was picked over Raytheon and a Boeing-Northrop Grumman team to conduct the Joint Common Missile’s (JCM) 4-year system development and demonstration (SDD) phase, which was to be worth as much as $1.6 billion. The long-term U.S. production estimate of 54,000 missiles would have brought the program to $5 billion, and the United Kingdom had expressed interest in the new weapon and participated in the development process.

The JCM program had made heavy use of modeling & simulation in its early phases, and was the first missile program ever to reach a Milestone B decision without conducting a live test. Subsequent live tests, including live fire tests against simulated urban targets, were also successful.

The missile reported less success on the budget front, however. In 2005, the Pentagon cut the Joint Common Missile (JCM) program in order to fund operations in Iraq. Canceling the Army-led JCM was estimated to save about $2.4 billion over the next 6 years ($928 million Army, $1.5 billion Navy). This triggered a counter-campaign by Congressional representatives, and created a controversy over the future of the program that never really went away. In June 2007, JCM was formally cancelled.

The UK ended up developing its own system. In November 1996, the UK had given MBDA the Brimstone contract, in order to create a fire-and-forget anti-armor missile that could be fired by fast jets as well as helicopters. Brimstone uses inertial guidance plus millimeter-wave radar, and has a terrain following mode as well. In October 2003, a successful series of test firings were carried out, and the missile entered service with the RAF in March 2005.

The Lazarus Missile: JAGM

JAGM schedule in 2009
(click for cutaway)

The need for a capability similar to the JCM remained clear even to the Pentagon, and so the U.S. Department of Defense’s Program Budget Decision (PBD) No. 753 directed the Chairman of the Joint Chiefs of Staff to commission a study for a very similar weapon system in time for the 2008 budget review. Meanwhile, the Alabama Congressional delegation and other members of Congress kept lobbying to keep something like JAGM going. It still made a great deal of sense, the program hadn’t suffered from cost overruns or major technical difficulties, and Britain’s fielding of the Brimstone missile offered external validation.

The original JCM requirements were really designed for the RAH-66 Comanche scout helicopter, however, and they were written before the Army’s Future Combat Systems mega-program. The new Joint Air-Ground Missile (JAGM) competition updated those requirements, and attempted to re-start the competition in 2008 under a new competitive approach, and with the planned number of missiles lowered to around 34,500. Pentagon acquisition czar Young introduced a prototyping requirement for JAGM as part of a wider-ranging set of acquisition reforms, hence the September 2008 Technology Development contracts to 2 teams.

By fall 2010, the JAGM program had wrapped up in a 27 month “risk reduction” development phase, leading up to a competitive flyoff between the 2 contractor teams. Program Management Reviews were held in Q2 of FY 2009, and a Milestone B decision that would begin full-scale System Design and Development for the winner was planned for Q1 of FY 2011 (November 2010). That deadline slipped, and for a while the next phase seemed likely to start at the end of Q4 2011 instead.

Instead, the program stalled again, and became an Army-only effort in 2012. A Continued Technology Development phase will carry it to 2014, at which point JAGM technologies may begin showing up in the next generation of AGM-114 Hellfire missiles.

JAGM: Original Plans & Platforms TOW 2B missile
(click for cutaway)

Under the original plan, JAGM would begin supplementing – and eventually replacing – Lockheed Martin’s GM-114 Hellfire family of missiles on the Army’s AH-64D Apache attack helicopters, its scout helicopters, and its MQ-1C Gray Eagle UAVs. The Navy would make the same substitution on their new MH-60R/S Seahawk helicopters, and US Navy and USMC F/A-18 Hornets and Super Hornets would carry them in place of Raytheon’s AGM-65 Maverick missile. The Marines’ AH-1Z Viper attack helicopter would carry them in place of Hellfire missiles, or Raytheon’s xGM-71 TOW family.

Platform integration would occur during the 48-month Engineering & Manufacturing Development (EMD) phase, and 2016 would have marked Initial Operational Capability (IOC) on USMC AH-1Z Viper and Army AH-64 Apache attack helicopters, as well as Navy F/A-18 E/F Super Hornets. IOC on the Army’s MQ-1C Predator-family Gray Eagle UAV, and the Navy’s MH-60R helicopter, was expected in FY 2017. This second wave of platform integrations would begin during the EMD phase, but continue into Low-Rate Initial Production.

The roster of platforms had a lot of expansion potential, since Hellfire missiles are already slated for a wide array of future UAVs, including the MQ-8 Fire Scout and A160 Hummingbird. Hellfires are even equipping some C-130J Hercules transport aircraft, thanks to modular quick-fit programs like Harvest Hawk. Existing foreign helicopters like the UAE’s AH-60M Battlehawks, French Tiger HAD, and Australia’s Tiger ARH helicopters would be another JAGM opportunity, alongside air force jet fighters like the F-15 Strike Eagle, F-16 Falcon, JAS-39 Gripen, etc. that have been qualified with AGM-65 Mavericks. Suitability for naval use, and extended range compared to existing Hellfires, could even make a full JAGM round a potential replacement for existing Griffin-B missiles on board patrol boats, and on the Littoral Combat Ship.

JAGM’s backers hope that success as a front-end bolt-on will eventually lead to contracts that would improve the missile as well, and restore the missile’s original concept.

The challenge is cost.

A role as a Maverick missile replacement is fairly straightforward, but the real volume and money is found in TOW and Hellfire replacement orders. Unfortunately, that’s also where the specifications for JAGM are significantly more challenging than the missiles they’d replace. A JAGM that’s more expensive than TOW or Hellfire won’t be a bargain for the US military, and would have a harder time selling abroad into the large helicopter and UAV markets.

Appendix B: JAGM’s Competing Industrial Teams Team Lockheed History repeats.

After JAGM rose from the dead, previous JCM incumbent Lockheed Martin came back with a team, in order to compete against the Raytheon/ Boeing team. In Team Lockheed’s design, The JAGM’s body and tri-mode sensors built on the existing body designs and sensors from Lockheed Martin’s AGM-114 Hellfire missile family, with its options of Hellfire II semi-active laser or millimeter wave Hellfire Longbow missiles. They also build on the cooled sensors used by the Lockheed/Raytheon Javelin imaging infrared (IIR) missile to add extra fire-and-forget insurance. Lockheed Martin will also push to leverage its incumbent status for both the current Hellfire missile family, and the M299 missile launcher that equips most helicopters.

Seeker improvements beyond the tri-mode features include extended range, “safing” that would allow carrier landings with live weapons instead of forcing planes to jettison their loads, and greater “fire and forget” capability. A single insensitive-munition rocket motor provides the required propulsion. Once it reaches the target, a multi-purpose warhead similar to the Hellfire II’s packs a shaped-charge designed to defeat the most advanced armored threats, along with a blast fragmentation capability to defeat ships, buildings, and bunkers with a two-phase warhead punch.

Team Lockheed included:

  • LM Missiles and Fire Control (lead integrator, tri-mode seeker)
  • Honeywell in Minneapolis, MN (inertial measurement unit)
  • L3 in Cincinnati, OH (focal plane array infrared detector)
  • EMS technologies in Atlanta, GA (millimeter wave antenna)

The following firms were also included, but aren’t likely to have much of a role under the new program structure:

  • Aerojet in Camden, AK (rocket motor)
  • Alliant Techsystems in Woodland Hills, CA (aircraft integration)
  • General Dynamics OTS in Niceville, FL (multi-purpose warhead)
  • Roxel in Summerfield, UK (propellant)
  • Marvin Engineering in Inglewood, CA (JAGM launchers)
  • Moog in Aurora, NY (control fin actuators)
  • and Perkin Elmer in Miamisburg, OH (warhead firing module).

Raytheon & Boeing Boeing JCM on F-18
(click to view full)

Raytheon and Boeing are working with rocket-maker ATK on their own offering, which leverages a variety of existing technologies. Some algorithms from Raytheon’s XM1111 Medium Range Munition guided tank shell were helpful, and the tri-mode laser/radar/ uncooled imaging infrared seeker would leverage Raytheon’s existing Common Tri-Mode Seeker (CTMS) program. For the full JAGM offering, MBDA and Boeing’s Brimstone missile is already designed and tested for use on fast jets like the Harrier, Tornado, and Eurofighter. It would serve as the body. The challenging specs for a new rocket motor would be addressed by ATK.

Raytheon’s uncooled infrared seeker currently offers less resolution than Lockheed’s cooled seeker, but it’s more reliable, lighter, and cheaper to maintain. The CTMS is already part of the NETFIRES NLOS-LS PAM, and helped Raytheon win the GBU-53 Small Diameter Bomb Phase II competition – against Boeing, no less – in 2010.

Despite all of this re-use, component assembly wasn’t the team’s focus. Raytheon’s Senior Business Development Manager Michael Riley flew AH-64D Apache Longbow helicopters for 10 years. “What this is, is not a missile program,” he says. “It’s an integration program,” because that’s where many of the costs and challenges typically lie. To make this point, he drew a whiteboard picture of the Apache and of the F-18 during a planning session. “Who builds the helicopter? The black boxes that go in it? Who builds the fighter? Who performs missile integration for these platforms? Is there anything else I need to tell you?” The answer to these questions was “Boeing,” and discussions soon brought the firms together under a common vision.

Chief Engineers Emil Davidoff and Andy Hinsdale saw the F/A-18 Hornet as the toughest integration engineering problem, because of the conditions it faces: -65C temperature at altitude, shock, vibration and impact from carrier landings, plus supersonic buffeting underwing. All for a missile that was supposed to be similar in size and weight to the Hellfire, but with 2x range, a tri-mode seeker, and a similar cost target.

Even so, the most difficult challenges in these kinds of efforts are not technical, but human. “Coopetition” between firms that are competing on related projects is a difficult process at the best of times, and can feel like an arranged marriage even when it succeeds. Trust-building over time, a firewall between co-operating and competing teams, and other standard measures are always useful; but they do not guarantee success.

In business, as in rocket motors, there is such a thing as chemistry. The relationship between Chief Engineers Davidoff and Hinsdale has been part of that, and so has a joint belief that this competition is ideally suited for their partnership. Win or lose, therefore, the JAGM partnership between Raytheon and Boeing is flourishing, and may have long-term effects. Before the verdict on their main effort has even been rendered, both teams have said that they are looking for synergies in other areas, and other programs.

JAGM’s 2012 program shifts have changed the competition, so that integration is no longer the overriding focus it once was. Fortunately, the Raytheon/Boeing Team made a number of technical decisions that will keep them in the game.

So far, the team has managed “good enough” performance that has tested successfully and met specifications. They believe their uncooled infrared technology’s cost advantage could become important, and that fixed-price GBU-53 SDB-II orders will raise seeker and guidance production volumes to a level that can meet the Army’s new cost targets. Raytheon’s head of JAGM business development, J.R. Smith, notes that by the time the JAGM CTD phase is done in 2014, their SDB-II will be 75% of the way through Engineering & Manufacturing Development, with 2 years of production underway.

Raytheon remains partnered with AH-64 manufacturer Boeing, and has told DID that they still consider ATK to be a team member, even though their rocket motor isn’t currently a priority for the US military.

Additional Readings & Sources

DID thanks the personnel at Raytheon Missile Systems in Tucson for their time and cooperation in clarifying their JAGM bid.

Background: Missiles

News & Views

Categories: News

Phalanx CIWS: The Last Defense, On Ship and Ashore

Tue, 10/14/2014 - 16:38
Phalanx, firing
(click to view full)

The radar-guided, rapid-firing MK 15 Phalanx Close-In Weapons System (CIWS, pron. “see-whiz”) can fire between 3,000-4,500 20mm cannon rounds per minute, either autonomously or under manual command, as a last-ditch defense against incoming missiles and other targets. Phalanx uses closed-loop spotting with advanced radar and computer technology to locate, identify and direct a stream of armor piercing projectiles toward the target. These capabilities have made the Phalanx CIWS a critical bolt-on sub-system for naval vessels around the world, and led to the C-RAM/Centurion, a land-based system designed to defend against incoming artillery and mortars.

This DID Spotlight article offers updated, in-depth coverage that describes ongoing deployment and research projects within the Phalanx family of weapons, the new land-based system’s new technologies and roles, and international contracts from FY 2005 onward. As of Feb 28/07, more than 895 Phalanx systems had been built and deployed in the navies of 22 nations.

The Phalanx Platform: Competition, Upgrades & Developments click for video

The MK 15 Phalanx system was originally developed as a last-ditch defense against enemy missiles, and possibly aircraft. It weighed in at around 13,600 pounds, and carries 1,550 rounds of 20mm ammunition. As radars have improved, and electronics have become both smaller and more powerful, the system has been improved to defend against a wider range of threats.

Block 1, Baseline 2. Uses high pressure air instead of hydraulics to release the rounds, boosting the MK 15’s firing rate from 3,000 rounds per minute to 4,500. That gives the system 21 seconds of full-rate firing before a reload is required, enough for several engagement sequences.

Phalanx maintenance
(click to view full)

Block 1B. This is the new standard for the US Navy, and the baseline for SeaRAM missile systems. Block 1B adds day/night FLIR optics that boost performance against drones, small boats, and missiles with low radar cross-sections, while boosting angle tracking against conventional targets. For conventional MK 15s, the gun barrels are tweaked, and new MK224 “Enhanced Lethality Cartridge” (ELC) ammunition has a 48% heavier tungsten penetrator that maximizes the effect of the small 20mm round.

The US Navy wants to be an all-1B fleet by 2015, at a conversion cost of about $4.5 million per unit. A number of allies are following that lead within their own time frames. Paul Gilligan, head of platform integration for Raytheon’s UK subsidiary, was quoted saying that:

“This upgrade is vitally important, especially in the context of the evolving threats worldwide… It provides protection to ships and their crews against an increased number of threats including small, fast gunboats; standard and guided artillery; helicopters; mines and a variety of shore-launched, anti-ship missiles.”

Block IB Baseline 2. Radar modifications swap out some hard-to-get analog components for digital off-the-shelf signal processing electronics, a new signal source and mixer, and a “surface mode” software upgrade that improves performance against targets on or near the water’s surface.

The US Navy wants to standardize at this level by 2019, using upgrade kits that cost just under $1 million.

Phalanx: New Frontiers SeaRAM
(click to view full)

The high speed and hence low warning time provided by many supersonic anti-ship missiles are also an evolving concern for global navies. Given the Phalanx’s limited range of just a couple of miles, coping with saturation attacks by missiles traveling at speeds of 0.5 – 1 mile per second requires layered defenses. To that end, the MK 15 Phalanx Block 1B’s mountings and electronics are also the base platform for the SeaRAM short range anti-air missile system. Unlike vertically-launched missiles, the SeaRAM’s RIM-116 missile is fired on a flat trajectory from an 11-round launcher. That saves precious seconds compared to vertical launch, allowing the system to provide an intermediate zone of defense between Phalanx guns and medium-range vertically-launched missiles like the RIM-162 Evolved Sea Sparrow or SM-2.

RIM-116 missiles can also be used against surface targets, and a number of ships use RAM or SeaRAM systems instead of standard Phalanx guns.

Another option to extend the system’s range involves an entirely new technology: lasers. Kevin Peppe, Raytheon’s Phalanx program director, has said that “a robust but relatively low power, low beam-quality commercial laser” is under investigation. It could offer an effective range about 3 times that of the existing M61A1 20mm gun, along with lower life-cycle costs and fewer worries about civilian casualties when used on land. Even so, this concept is a long way from becoming a practical battlefield weapon. More powerful solid-state lasers will probably be required in order to make the concept feasible against the full range of threats, and other complications like the effects of fog on lasers, and stopping power issues, must also be overcome.

Land, Ho! C-RAM/ Centurion Phalanx C-RAM
(click to view full)

One area of clear progress for the Phalanx system is on land. Back in June 2005, “Phalanx R2D2s to Counter Land Mortars” drew attention to the US Army’s land-based version, imaginatively known as the “Land-based Phalanx Weapon System” and also known as MK 15 MOD 29 Centurion. The MK 15 MOD 29 Centurions are Block 1B CIWS weapon systems mounted on low-boy trailers, with self contained diesel electric power and cooling water.

Centurion fires explosive rounds that self-destruct if they don’t hit a target, so that falling 20mm bullets don’t kill people in the base itself or in nearby populated areas.

Unofficially, many refer to these weapons as “R2D2s,” after the Star Wars robot they resemble. Originally developed to defend US bases against mortar attack, these trailer-mounted weapons could also provide defensive options against the kinds of rocket attacks encountered in Round 1 of Israel’s 2006 war with Hezbollah, Iran & Syria. This appears to be a spiral development contract, with fielding of interim solutions as development progresses.

AN/TPQ-36 Firefinder

Centurion can reach beyond its own array and use other target acquisition sensors to detect and track fired rounds, including Northrop Grumman’s AN/TPQ-36 short-range Firefinder radar and the Lightweight Counter Mortar Radar.

C-RAM (Counter Rockets, Artillery and Mortars) is both a term used to refer to Centurion’s general role, and a specific command and control program that makes use of the weapon. The fire-control subsystem Northrop Grumman Mission Systems provides for C-RAM uses software modified from their Forward Area Air Defense Command and Control (FAAD C2) system, which ties together the sensors and weapons of the Army’s short-range air-defense battalions. Northrop Grumman is the prime contractor for FAAD C2, which is operational throughout the world and has been especially critical to homeland security efforts in the Washington, DC area.

Once a threat is detected by Army sensors FAAD C2/C-RAM triggers audio and visual alarms sound to warn exposed soldiers. A fire-control subsystem predicts the mortar’s flight path, prioritizes targets, activates the warning system, and provides cueing data to help Centurion defeat the mortar round while still in the air.

Centurion has been deployed by the USA, and Britain. In October 2008, Raytheon and Oshkosh unveiled the Mobile Centurion, which mounts the system on a hybrid-electric HEMTT A3 heavy truck.

Phalanx: Competitors Thales Goalkeeper
(click to view full)

Phalanx is not alone on the market. Its principal competitor is the Thales Nederland Goalkeeper system, which uses the same GAU-8 30mm tank-killer gatling gun mounted on the A-10 Thunderbolt close support aircraft, and a dual frequency I/K-band track while scan radar. The GAU-8/A offers a firing rate of 4,200 rounds per minute, and the heavier projectiles offer more hitting power, which may help stop fragments of a supersonic missile from hitting a ship and doing damage. On the flip side, Goalkeeper takes up a larger footprint of space on board ship, and requires significant “deck penetration” and integration instead of being a bolt-in offering like Phalanx. The Goalkeeper is a distant second in the market, but it has a solid foothold. It’s currently in service with the British Royal Navy, as well as Belgium, Chile, the Netherlands, Portugal, Qatar, South Korea, and the UAE.

There are no reports of a 30mm Phalanx, but Raytheon is taking other steps to keep its platform on top of the market, and relevant to modern threats.

Phalanx Contracts and Key Events

Unless otherwise specified, all contracts are issued by the US Naval Sea Systems Command in Washington, DC to Raytheon Co. in Tucson, AZ.

FY 2014

Korea buys Block 1Bs for FFX frigates; Australia requests upgrades; Support contracts. MK15, HMCS Ottawa
(click to view full)

Oct 14/14: Australia. The US DSCA announces Australia’s formal export request for up to 3 Phalanx Block 1B Baseline 1 to Block 1B Baseline 2 upgrade kits; overhaul and upgrade of up to 9 Phalanx Block 1A mounts to Block 1B Baseline 2 systems; 11 Remote Control Stations; 11 Local Control Stations, spare and repair parts; support equipment; test equipment; personnel training and training equipment; publications and technical documentation; and other forms of US Government and contractor logistics and technical support.

The principal contractor will be Raytheon Missile Systems Company in Tucson, AZ, and the estimated cost is up to $76 million. Implementation of this proposed sale will not require the assignment of any additional U.S. Government or contractor representatives to Australia. Sources: US DSCA #14-50, “Australia – Close-In Weapon System Block 1B Baseline 2 Upgrade”.

DSCA request: Australia

Sept 26/14: Support. Raytheon Co. in Tucson, AZ, receives a $15.5 million contract modification, which buys spares for Land-based Phalanx systems. All funds are committed immediately, using FY 2013 and 2014 US Army budgets.

Work will be performed in Williston, VT (23.4%); Louisville, KY (16.9%); Andover, MA (11.6%); Grand Rapids, MI (6.2%); Phoenix, AZ (4.5%); Tucson, AZ (3%); and other locations under 1% (34.4%), and is expected to be complete by February 2017. US Naval Sea Systems Command, Washington, DC manages the contract (N00024-13-C-5406).

June 27/14: Support. Serco Inc. in Reston, VA, received a $31.2 million cost-plus-fixed-fee/ firm-fixed-price, indefinite-delivery/indefinite-quantity contract for Close-In Weapons System (CIWS) waterfront installation support. they’ll help with installation of Ship Alterations, Ship Change Documents, and Ordnance Alterations for Phalanx systems on US Navy and US Coast Guard vessels, and for the US Army. Only $114,000 is committed immediately, with the rest awarded as required.

Work will be performed in Norfolk, VA (41%); San Diego, CA (30%); Pearl Harbor, HI (5%); Everett, WA (6%); Mayport, FL (6%); and various overseas ports (12%); and is expected to be complete in June 2017. This contract was competitively procured via with 3 offers received by the US Naval Surface Warfare Center, Indian Head Explosive Ordnance Disposal Technology Division in Indian Head, MD (N00174-14-D-0028).

May 22/14: Support. Raytheon in Tucson, AZ receives a $115.5 million contract modification for MK15 Phalanx upgrades and conversions, system overhauls and associated hardware.

All funds are committed using various FY 2013 & 2014 budgets, with $43.6 million expiring on Sept 30/14. Work will be performed in Williston, VT (13%); Melbourne, FL (9%); Andover, MA (6%); Louisville, KY (5%); Tempe, AZ (5%); Pittsburgh, PA (5%); Ottobrunn, Germany (5%); Bloomington, MN (3%); Ashburn, VA (3%); Phoenix, AZ (3%); El Segundo, CA (2%); Hauppauge, NY (2%); Syracuse, NY (2%); Salt Lake City, UT (2%); Joplin, MO (2%); Bracknell, United Kingdom (2%); Grand Rapids, MI (1%); Norcross, GA (1%); and various other locations less than 1% each (29%); it is expected to be completed by September 2017. US NAVSEA in Washington, District of Columbia, is the contracting activity (N0024-13-C-5406).

Feb 24/14: South Korea. Raytheon announces a $123 million Direct Commercial Sale (DCS) contract to deliver 9 Phalanx Block 1Bs for installation aboard the ROK Navy’s FFX Batch II light frigates, and aboard the AOE II successors to their 3 Cheonji Class fast combat support ships. Phalanx deliveries will begin in 2016, and are scheduled to be complete in 2022.

DCS contracts are subject to different announcement rules than Foreign Military Sale contracts, and are managed directly by the buyer instead of by a US military surrogate. This is Raytheon’s largest DCS contract for Phalanx systems, and it was actually signed in Summer 2013. Sources: Raytheon, “Raytheon awarded $123 million Phalanx contract from Republic of Korea”.

9 Block 1Bs for ROK FFX

Jan 3/14: Support. Raytheon in Tucson, AZ receives a $52.1 million Design Agent Engineering and Technical Support Services modification for maintainence of, and improvements to, the Mk15 Phalanx, Land-based Phalanx, and SeaRAM weapon systems.

Work will be performed in Tucson, AZ, and is expected to be complete by January 2015. $12.5 million is committed immediately from a wide array of USN FY 2014 and FY 2013 R&D, weapons, and shipbuilding budget lines, plus a US Army budget. Of that, $4 million will expire on Sept 30/13 (N00024-12-C-5405).

FY 2012 – 2013

British order; US upgrades. Target shoot-down
(click for video)

Sept 10/13: FY 2013-14. A $136.2 million contract to overhaul and upgrade 19 MK 15 Phalanx systems, and produce 4 new SeaRAM systems. This contract provides purchases for the U.S. Navy (80%), Japan (15%), the US Army (4%) and Pakistan (1%) under the foreign military sales (FMS) program; and all funds are committed immediately. $55 million will expire at the end of the current fiscal year, on Sept 30/13.

Another $94.8 million in options exist for a FY 2014 buy of 12 more Phalanx upgrades, and another 4 SeaRAM systems, to bring the total contract to $231 million.

Work will be performed in Louisville, KY (26%); Anaheim, CA (16%); Melbourne, FL (11%); Dayton, OH (11%); Syracuse, NY (10%); McKinney, TX (5%); Andover, MA (5%); Bloomington, MN (5%); Radford, VA (5%); Salt Lake City, UT (3%); and Tucson, AZ (3%), and is expected to be complete by September 2017. This contract was not competitively procured in accordance with FAR 6.302-1(a)(2)(iii) “one responsible supplier” provisions (N00024-13-C-5406). Sources: Pentagon | Raytheon Sept 11/13 release.

FY 2013 order

Oct 23/12: 5 for RFA. Raytheon signs a GBP 42.8 million (about $68.6 million) contract to deliver 5 Phalanx Block 1B systems to Britain, beginning in 2013. Installation and in-service support will be provided by Babcock Marine.

The weapons are destined for Royal Fleet Auxiliary support vessels. At the moment, Raytheon’s Phalanx system is installed on 14 Royal Navy vessels, including their 6 new Type 45 destroyers. Other British ships use Thales’ Goalkeeper 30mm system. Royal Navy | Raytheon.

British order

May 17/12: FY 2012. Raytheon in Tucson, AZ receives a $57.9 million contract modification, covering FY 2012 requirements for MK 15 Phalanx Close-In Weapon Systems (CIWS). It includes Phalanx Block 1B BL2 upgrade kits and conversions; MK 15 Mod 31 CIWS SeaRAM missile upgrade kits and conversions in support of Austal’s forthcoming LCS 10 and 12; 2 Phalanx Block 1Bs for the forthcoming DDG 116 destroyer; MK 15 CIWS hardware product improvements and ancillary equipment; Block 1B Ordalt (Ordnance Alternation) kits; and MK 15 CIWS Block 1B Class A overhauls.

Raytheon’s release cites 9 Phalanx overhauls and upgrades, 20 Phalanx radar upgrade kits, and 2 SeaRAM systems that use the Phalanx system as the chassis for an 11-shot RIM-116 short-range anti-aircraft missile launcher, instead of a 20mm gatling gun.

Work will be performed in Louisville, KY (39%); Germany (12%); Palm Bay, FL (12%); Tucson, AZ (9%); Pittsburgh, PA (8%); Burlington, VT (6%); Andover, MA (4%); Syracuse, NY (4%); Long Beach, CA (1%); Radford, VA (1%); Bloomington, MN (1%); Salt Lake City, UT (1%); Norcross, GA (1%); and New Albany, IN (1%); and is expected to be complete by September 2015. $24.2 million will expire at the end of the current fiscal year, on Sept 30/12 (N00024-10-C-5427).

FY 2012 order

FY 2011

Japan; South Korea; Poland; UK. MK.15 IB on JS Hyuga
(click to view full)

Dec 27/11: Support. A $45.6 million cost-plus-fixed-fee contract for Phalanx, SeaRAM, and Land-based Phalanx design agent engineering and technical support services covering overall maintainability, reliability, and improvements. The contract is initially funded with $726,000, with more to be allocated as needed.

Work will be performed in Tucson, AZ, and is expected to be completed by January 2013. This contract was not competitively procured by US NAVSEA in Washington, DC (N00024-12-C-5405).

Sept 12/11: Raytheon signs a $65.5 million Direct Commercial Sale contract to deliver 5 Phalanx Block 1B Close-In Weapon Systems to the Republic of Korea Navy for the new 3,200 ton Ulsan-1 Class FFX inshore patrol frigates.

The contract calls for the systems to be installed starting in April 2013, and represents Phalanx’s largest sale to the ROK fleet – which generally uses Thales’ larger 30mm Goalkeeper instead. Raytheon.

South Korea: FFX buy

Aug 31/11: Support. A 5-year, $162.2 million not-to-exceed fixed-price requirements contract for performance based logistics support for the Phalanx CIWS. This announcement includes service to the governments of Australia, United Kingdom, New Zealand, Japan, Poland, and Bahrain, which will be issued as separate delivery orders, on an as-required basis.

Work will be performed in Louisville, KY, and is expected to be completed August 2016. This contract was not competitively procured pursuant to FAR 6.302-1, by US NAVSUP Weapon Systems Support in Mechanicsburg, PA (N00104-11-D-ZD43).

Aug 25/11: FY 2011. A not-to-exceed $161 million contract modification to previously awarded contract for MK 15 Mod 31 SeaRAM systems in support of Independence Class ships LCS 6 Jackson and LCS 8 Montgomery, and Japan’s “DDH 2405 helicopter destroyer”; as well as Phalanx CIWS Block 1B class “A” overhauls, and land-based Phalanx Weapon System class “A” overhauls.

The SeaRAM systems differ from other RAM launchers by having the full Phalanx enclosure, including the accompanying radar, as well as added infrared sensors. This creates a bolt-on missile system that can be operated semi-autonomously, or integrated and coordinated via the ship’s combat system. In exchange, it holds just 11 missiles in its launcher, instead of 21. DID covers it as a separate system.

As for Japan’s “DDH-2405,” this is the first ship of Japan’s new 22DDH project to field 800 foot, 30,000t vessels that are larger than its existing 18,000t Hyuga Class. These ships are properly characterized as escort carriers, but Japan’s constitution forbids them from owning carriers. The SH-60 Seahawk helicopters on board JMSDF Hyuga and JMSDF Ise certainly proved themselves in the wake of the 2011 tsunami, however, which should mute any domestic criticism.

The Pentagon adds that Phalanx CIWS is currently installed on approximately 152 US Navy and 14 US Coast Guard ships, and is in use in 23 foreign navies. Work will be performed in Louisville, KY (30%); Andover, MA (19%); Tucson, AZ (9%); Germany (7%); Syracuse, NY (7%); Long Beach, CA (6%); Radford, VA (6%); Burlington, VT (6%); Palm Bay, FL (2%); Pittsburgh, PA (2%); Bloomington, MN (2%); Salt Lake City, UT (2%); Norcross, GA (1%); and New Albany, IN (1%). Work is expected to be complete by September 2015, but $90.7 million will expire at the end of the current fiscal year, on Sept 30/11 (N00024-10-C-5427).

FY 2011: USA, (Japan)

Aug 1/11: Support. A $7 million contract modification for MK 15 Phalanx engineering and technical services to the US military, and the governments of Japan and Saudi Arabia (1%) under the Foreign Military Sales Program. Work will be performed in Tucson, AZ, and is expected to be complete by April 2012. $200,000 will expire at the end of the current fiscal year, on Sept 30/11 (N00024-07-C-5437).

July 26/11: Poland submits a DSCA notice for service life extensions of its FFG-7 frigates, which includes upgrades to its MK 15 systems from Block 0 to Block 1B/ Baseline 2. Read “Poland to Extend, Improve its FFG-7 Frigates” for full coverage.

Poland request

June 21/11: UK. Babcock International Group announces the pending qualification and testing of Raytheon’s Phalanx 1B 20mm close-in weapon system on HMS Daring. The Type 45 air defense destroyers were not delivered with secondary defensive systems for use against UAVs, small boats, and incoming missiles, so the pending qualification will help to patch the gaps in their defenses.

Babcock will supervise the installation of 2 systems in HMS Daring at Portsmouth Naval Base, as a lead-in to Naval Weapon Sea Trials (NWST), including a towed target firing. Most British ships have used Thales larger 30mm Goalkeeper system, but the Phalanx is an easier and cheaper “bolt-on” addition. Babcock’s previous Phalanx installations have been upgrades on the Type 42 destroyer HMS York, and the fleet replenishment ship RFA Fort Victoria.

April 29/11: The US Defense Security Cooperation Agency announces [PDF] Britain’s official request for Ordnance Alteration Kits for 36 MK 15 Phalanx Close-In Weapon System (CIWS) upgrade (Ordnance Alternation, or OrdAlt) kits. The request includes 20 kits for converting Phalanx Block 1A systems to Block 1B Baseline 2, and 16 kits that raise systems from Block 1B Baseline 1 to Baseline 2. Spare and repair parts, support equipment, personnel training and training equipment, publications and technical documentation, software support, and other US government and contractor support are also included. The estimated cost is up to $137 million, but exact costs will depend on a negotiated contract.

The Block 1B Baseline 2 upgrades improve optical and radar close-in detection, tracking and engagement, and extend Block 1A capabilities to include targets like helicopters, UAVs, and fast boats. Raytheon Systems Company in Tucson, AZ will be the contractor, but implementation will not require any contractor or US government support personnel.

Britain request

April 11/11: Raytheon announces that it has delivered the 1st 20mm Phalanx Block 1B Close-In Weapon System to the Republic of Korea Navy. The direct commercial sale calls for the Phalanx Block 1B system to be installed on the lead FFX light frigate in 2011.

Other South Korean ships use Thales 30mm Goalkeeper system, but Phalanx’s bolt-on nature makes it a friendlier choice for smaller vessels. Raytheon expects to sign another contract with South Korea for an additional 5 Phalanx systems in the near future, representing the other 5 FFX ships.

South Korea: initial order & delivery

FY 2010

Support and tests. Phalanx, reloaded
(click to view full)

Sept 29/10: Support. A $35.2 million contract modification for engineering and technical services in support of the MK 15 Phalanx close-in-weapon system. Work will be performed in Tucson, Z, and is expected to be complete by December 2011. $8,379,133 will expire at the end of the current fiscal year, on Sept 30/10 (N00024-07-C-5437).

May 19/10: Support. A $22.9 million modification to a previously awarded contract (N00024-07-C-5437) for engineering and technical services in support of the MK 15 Phalanx CIWS. Work will be performed in Tucson, AZ, and is expected to be complete by September 2010. Contract funds in the amount of $5.3 million will expire at the end of the current fiscal year.

March 31/10: FY 2010. A $204 million not-to-exceed contract for MK 15 Phalanx Close-in Weapon System (CIWS) upgrades and conversions, system overhauls, and associated hardware.

Work will be performed in Louisville, KY (30%); Andover, MA (19%); Tucson, AZ (16%); Syracuse, NY (7%); Long Beach, CA (6%); Radford, VA (6%); Burlington, VT (6%); Palm Bay, FL (2%); Pittsburgh, PA (2%); Bloomington, MN (2%); Salt Lake City, UT (2%); Norcross, GA (1% ); and New Albany, IN (1%). Work is expected to be complete by September 2014, and $51.3 million will expire at the end of the current fiscal year. This contract was not competitively procured (N00024-10-C-5427).

FY 2010

March 24/10: Support. A $5.8 million modification to a previously awarded contract (N00024-07-C-5437), exercising options for engineering and technical services in support of the MK 15 Phalanx Close-In-Weapon System. Work will be performed in Tucson, AZ, and is expected to be complete by September 2010.

March 9/10: Testing. USS Abraham Lincoln [CVN-72] successfully completes a PACFIRE test firing of her 20mm Phalanx Close In Weapons System (CIWS), while exercising the boat’s combat systems. Upgrades to the close-in self-defense weapon system included transition from block 1 baseline 0, to block 1 baseline 2.

The main improvement uses compressed high pressure air instead of hydraulics to release the rounds faster, allowing the gun to fire 4,500 rounds per minute instead of 3,000. US Navy.

FY 2009

Israel; Canada. Boat beat-down
(click for video)

Sept 23/09: Support. A $13.7 million modification to previously awarded contract (N00024-07-C-5437), exercising options for engineering and technical services in support of the MK 15 Phalanx Close-In-Weapon System. Work will be performed in Tucson, AZ and is expected to be complete by September 2010. Contract funds in the amount of $1.3 million will expire at the end of the current fiscal year.

June 19/09: The Government of Canada awards Raytheon Canada Limited of Calgary, AB an 8-year, C$ 180 million contract to overhaul, repair and upgrade the Canadian Navy’s Phalanx Close-In Weapon Systems (CIWS). The Phalanx serves on Canada’s Halifax class frigates, its aged Iroquois/Tribal class “air defense” destroyers, and its Protecteur class supply ships. The upgrades will likely take the systems to Phalanx Block 1B status, which improves capabilities against fast boats, helicopters, and UAVs.

Canada’s Industrial and Regional Benefit (IRB) Policy applies to this procurement. It requires that Raytheon Canada Limited undertake “high quality and advanced-technology business activities in Canada valued at 100 per cent of the contract value.”

Canada support & upgrades

May 15/09: FY 2009. A $259.9 million contract modification for MK 15 Phalanx Close-In-Weapon System (CIWS) Block 1B upgrades and conversions, system overhauls, and associated hardware. This includes the MK 15 MOD29 Centurion land-based system. $8.8 million will expire at the end of the current fiscal year, on Sept 30/09.

Work will be performed in Louisville, KY (30%); Andover, MA (19%); Tucson, AZ (16%); Syracuse, NY (7%); Long Beach, CA (6%); Radford, VA (6%); Burlington, VT (6%); Palm Bay, FL (2%); Pittsburg, PA (2%); Bloomington, MN (2%); Salt Lake City, UT (2%); Norcross, GA (1%); and New Albany, IN (1%), and is expected to be completed by September 2012 (N00024-07-C-5444).

FY 2009

May 13/09: Training. A $5.8 million contract modification for phalanx simulated infrared/visible engagement target simulator kits with shorting plugs in support of the Phalanx CIWS Program. The shorting plugs are useful, in order to make sure the simulated targets can’t lead to live firing.

Raytheon will work on the contract in England (80%); Louisville, KY (15%); and Tuscon, AZ (5%); and expects to complete work by January 2011. Contract funds will not expire at the end of the current fiscal year. The Naval Sea Systems Command manages the previously awarded contract (N00024-07-C-5444).

April 21/09: Israel. Despite news reports that Israel would order the land-based Mobile Centurion system, the Jerusalem Post quotes “senior defense officials” who say that a decision won’t be made until Israel can watch live tests in summer 2009. The report adds that Israel is interested in the system’s potential along the Gaza Strip border, but there are still several obstacles that must be overcome first.

One is its effectiveness against Kassam rockets and mortars, which will be answered by the live tests. The second obstacle is cost, given that each system covers 1.2 square km and costs about $25 million. That works well for protecting a base, but protecting a city like Sderot become far more costly. In a democracy, issues like noise levels are an obstacle that must be evaluated under environmental regulations, though that’s likely to be a minor hindrance at best. The final obstacles would involve American approval of the sale, which is very likely, and the willingness of American military customers to give up their own production slots, which is less certain. If they do not expedite delivery with production slot swaps, the required wait time might affect the rationale for choosing the Phalanx-based system over other options.

Jan 30/09: Laser Phalanx. White Sands Missile Range in New Mexico state continues to test a solid-state laser version of the Phalanx weapons system. The laser has proven capable of “rapidly” penetrating armor plating even when not at full power, and the next step is to test the system on mortar rounds.

The exact time required for burn-through or detonation of incoming rounds is a very important number. US Army release.

Oct 8/08: Mobile Centurion. Raytheon and Oshkosh unveil the “Mobile Centurion,” which mounts the Phalanx system on a hybrid-electric HEMTT A3 heavy truck. To make room, the truck’s normal load-handling system was removed, in favor of a fixed platform for the Phalanx. The ProPulse drive A3 model was picked because it has 120 kW of power to divide between the truck’s drive train and the Pahlanx as needed, which removes the need to tow a bulky generator.

The other benefit is air mobility. Instead of fitting just 1 current model Centurion/C-RAM trailer into a C-17 strategic transport plane, 3-4 Mobile Centurions could be fitted instead. Defense News.

FY 2008

Australia, New Zealand. Over Baghdad
click for video

Sept 22/08: Support. A $31.3 million modification to previously awarded contract N00024-07-C-5437, exercising an option for engineering and technical services in support of the MK 15 Phalanx CIWS.

Phalanx CIWS is currently installed on approximately 187 USN ships and is in use in 20 foreign navies. This modification combines support for the US Navy, US Army and the Governments of Egypt, Portugal and Australia under the Foreign Military Sales Program. Work will be performed in Tucson, AZ, and is expected to be complete by September 2009. Contract funds in the amount of $1.7 million will expire at the end of the current fiscal year.

Sept 18/08: FY 2008. A not-to-exceed $220.5 million modification to a previous contract for MK 15 Phalanx Close-In-Weapon System Block 1B upgrades and conversions, system overhauls, and associated hardware. Contract funds in the amount of $19.9 million will expire at the end of the current fiscal year.

Most Phalanx Block 1B conversions involve naval ships, due to the upgrade’s defensive value against small boats. The land-based C-RAM system is also based on Block 1B, however, and they will require system overhauls and spares of their own as part of their regular maintenance.

Work will be performed in Louisville, KY (30%); Andover, MA (19%); Tucson, AZ (16%); Syracuse, NY (7%); Long Beach, CA (6%); Radford, VA (6%); Burlington, VT (6%); Palm Bay, FL (2%); Pittsburg, PA (2%); Bloomington, MN (2%), Salt Lake City, UT (2%); Norcross, GA (1%); and New Albany, IN (1%), and is expected to be complete by September 2012 (N00024-07-C-5444).

FY 2008

May 23/08: Support. A $14.3 million modification to previously awarded contract (N00024-07-C-5437) provides more incremental funding for engineering and technical services, bringing the contract’s current exercised value to $57.6 million. This modification combines purchases for the U.S. Army (45%); U.S. Navy (42%) and the Government of Pakistan, (13%) under the Foreign Military Sales Program. Work will be performed in Tucson, AZ and is expected to be completed by September 2008. The Naval Sea Systems Command in Washington Navy Yard, DC issued the contract.

May 16/08: New Zealand’s TV3 reports that the country’s 2 ANZAC Class frigates will upgrade their Phalanx guns to Block 1B status, as the first step in a larger overhaul and upgrade. See “NZ Looks to Upgrade ANZAC Frigates.”

NZ upgrade

May 12/08: Centurion. A not-to-exceed $61.2 million modification to previously awarded contract (N00024-07-C-5444) for MK 15 Phalanx Close-In-Weapon System (CIWS) ordnance alteration kits, spares, and associated hardware for Land-Based configurations to support the Global War on Terrorism.

Work will be performed in Louisville, KY (22%); Andover, MA (19%); Tucson, AZ (16%); Syracuse, NY (9%); Long Beach, CA (9%); Radford, VA (7%); Burlington, VT (7%); Palm Bay, FL (3%); Pittsburg, PA (2%); Bloomington, MN (2%); Salt Lake City, UT (2%); Norcross, GA (1%); and New Albany, IN (1%); and is expected to be complete by September 2010. Contract funds in the amount of $1.5 million will expire at the end of the current fiscal year.

Jan 22/08: Support. An $18.7 million modification to previously awarded contract (N00024-07-C-5437) for engineering and technical services in support of the MK 15 Phalanx Close-In-Weapon System. Work will be performed in Tucson, AZ and is expected to be complete by September 2008. Contract funds in the amount of $3.6 million will expire at the end of the current fiscal year.

“PHALANX CIWS is currently installed on approximately 187 USN ships and is in use in 20 foreign navies.”

Nov 9/07: FY 2007. Raytheon Co. in Tucson, AZ received a $225.1 million firm-fixed-price contract for MK 15 Phalanx Close-In Weapon Systems (CIWS) Block 1B Upgrade and Conversion equipment, plus U.S. Army Block 1B Land-based Phalanx Weapon System (LPWS) Upgrade and Conversion equipment, and U.S Army Block 1B LPWS’s and associated spares and support equipment. This effort also includes purchases for the Governments of Portugal (1.23%) and Australia (1.09%) under the Foreign Military Sales Program.

A subsequent Raytheon release adds more details: they will overhaul and upgrade 34 Phalanx CIWS systems for the U.S. Navy and 1 system for the Royal Australian Navy, and will build 12 Land-Based Phalanx Weapon Systems for the U.S. Army, while providing associated hardware to all customers under the agreements.

Work will be performed in Louisville, KY (55.7%), Burlington, VT (12.4%), Palm Bay, FL (8%), Andover, MA (4.9%), Pittsburg, PA (4.8%), Carson, CA (4.1%), Tucson, AZ (3.4%), Brooklyn, NY (3.4%), Bloomington, MN (3.3%), and is expected to be complete by November 2010. Contract funds in the amount of $7.3 million will expire at the end of the current fiscal year. The contract was not competitively procured by the Naval Sea Systems Command in Washington Navy Yard, Washington DC (N00024-07-C-5444).

FY 2007: USA, Australia

Oct 1/07: Overhauls. A $16.7 million firm-fixed-price modification under previously awarded contract (N00024-04-C-5460) for 7 Phalanx Close-In Weapon System (CIWS) Class A Overhauls. PHALANX CIWS is currently installed on approximately 187 USN ships and is in use in 20 foreign navies. Work will be performed in Louisville, KY and is expected to be complete in February 2011. All contract funds will expire at the end of the fiscal year.

FY 2007

FLIR; Lasers? UK Phalanx at night
(click to view full)

Sept 27/07: Centurion. Jane’s International Defence Review reports that Raytheon is planning to approach NATO with a strategy to lease or sell a number of its Centurion land-based Phalanx systems for deployment at fixed bases in Iraq and Afghanistan.

Sept 25/07: Ammo. Alliant Techsystems Inc. (ATK) in Mesa, Ariz., USA, won an estimated $44.6 million firm-fixed-price contract for MK 244 Mod 0, linked armor-piercing discarding sabot (APDS) 20mm cartridges, electric-primed 20mm rounds designed to be fired by the M61A1 20mm gatling cannon mounted in the shipboard Phalanx CIWS. This cartridge is referred to as the Enhanced Lethality Cartridge, as it contains a heavier projectile and inflicts more damage to the target than the precursor to this round, the MK149 Mod 4.

Work will be performed in Independence, MO, and is expected to be complete by September 2010. Contract funds in the amount of $512,519 will expire at the end of the current fiscal year. This contract was competitively procured and advertised via the Internet, with 2 offers received [General Dynamics ATP was almost certainly the other bidder]. The US Naval Surface Warfare Center, Crane Division in Crane, Ind. issued the contract. (N00164-07-D-4285)

Sept 11/07: Laser Phalanx. Jane’s reports from the British DSEi exhibition that Raytheon is working on a Phalanx variant that can fire lasers. What advantages would a laser system offer? Would it really be an advance over the current Phalanx system? DID explains.

Aug 23/07: Sub-contractors. DRS Technologies, Inc. announced a $26 million contract, with an option for an additional $23 million contract, to produce, integrate, test and deliver Phalanx Thermal Imagers for the MK 15 Phalanx Close-In Weapon System (CIWS). The contract was awarded to DRS by the Missile Systems business of Raytheon in Louisville, KY. The imagers were developed by the company’s DRS Sensors & Targeting Systems unit – California Division in Cypress, CA, and DRS-produced work for this contract will be accomplished by the unit’s Optronics Division in Palm Bay, FL. DRS will start delivering the imagers immediately, with completion expected by July 2008.

DRS’s Phalanx Thermal Imagers incorporate 2nd-generation FLIR (Forward Looking Infra-Red) technology, similar to that used by the company in the Horizontal Technology Integration series of sighting system products being delivered to the U.S. Army and Marines for ground combat systems like the M2/M3 Bradley IFV and M1 Abrams tanks, LRAS3, et. al. The new systems will replace 1st generation FLIR technologies currently in use on MK 15 Phalanx mounts.

May 25/07: UK C-RAM. Jane’s Defence Weekly reports that Britain will deploy a C-RAM system to protect UK forces in southern Iraq. Speaking at the Royal United Services Institute’s (RUSI’s) Air Power conference in London on May 17/07, Air Chief Marshal Sir Clive Loader, Commander-in-Chief of the RAF’s Air Command, disclosed that the Raytheon Land-based Phalanx Weapon System (LPWS) was being acquired “to protect the UK’s deployed bases in operational theaters.”

May 2/07: EDO Corporation announces a $15 million follow-on award for expanded support of the Army’s C-RAM (Counter Rocket, Artillery, and Mortar) system, which includes a land-based Phalanx weapon coupled with self-destructing explosive bullets. The task order was effective April 1, 2007 and includes in-theater support.

EDO services have included testing and validation of the systems at test facilities and in the field, assistance in fielding systems, and logistics services to ensure their continued operation. These services are being provided in the U.S. and in support of nearly 20 locations in combat zones. EDO release

Feb 28/07: Call UPS! Raytheon announces a 5-year, $169.9 million Performance Based Logistics contract to manage the spare parts for the U.S. Navy’s Phalanx CIWS. More than 1,100 part numbers amounting to more than 30,000 individual Phalanx parts are warehoused in Louisville, KY, where, for a firm-fixed-price, Raytheon, in partnership with United Parcel Service Supply Chain Solutions, guarantees delivery of spares to drop points within an agreed-to time frame.

The distribution and management functions allow for worldwide delivery using the best commercial carrier available, while maintaining process control through in-transit tracking. This process also allows for retail and wholesale spares modeling, spares procurement and, perhaps most importantly, inventory management. The provisions and benefits of the contract apply to both the U.S. Navy and the 24 international navies that have Phalanx in their inventories. Frank Wyatt, vice president for Raytheon’s Naval Weapon Systems in Tucson, AZ:

“The partnership with United Parcel Service, developed through the previous Phalanx logistics contract, has greatly improved inventory accuracy. Currently, Phalanx inventory accuracy stands at 99.9 percent resulting in a substantial increase in supply availability and a reduced wait time… Future cost savings and improved responsiveness can be anticipated by reducing parts demands through engineering redesign of selected high-demand, high-cost parts.”

Feb 8/07: Shingo. Raytheon Missile Systems’ Louisville, KY facility has captured a prestigious Shingo Prize for Excellence in Manufacturing, marking the 4th consecutive year that Raytheon facilities have won. The Louisville facility manufactures the Phalanx CIWS and RAM/SeaRAM systems.

Jan 3/07: Northrop Grumman Mission Systems in Huntsville, AL received a delivery order amount of $29.9 million as part of a $144.5 million firm-fixed-price and cost-plus-fixed-fee contract for the Forward Area Air Defense Command and Control/ Counter-Rocket Artillery Mortar Systems (FAAD C2/ C-RAM) Integration contract. Work will be performed in Huntsville, AL and is expected to be complete by Sept. 28, 2009. This was a sole source contract initiated on Nov. 20, 2006 by the U.S. Army Aviation and Missile Command in Redstone Arsenal, AL (W31P4Q-06-D-0029).

Northrop Grumman’s Jan 17/07 release describes it as “a contract valued at up to $71 million to continue their support in system engineering, integration, and installation for…C-RAM… In addition to continuing to support systems engineering, integration and installation of C-RAM capabilities, the indefinite delivery/indefinite quantity (IDIQ) C-RAM installation and support contract includes logistics and training support.”

FY 2006

Pakistan; Australia; UK. Calibration on CVN 73
(click to view full)

Sept 29/06: Northrop Grumman Mission Systems in Huntsville, AL received a delivery order amount of $28.6 million as part of a $670 million firm-fixed-price and cost-plus-fixed-fee contract for Forward Air Defense Command and Control/ Counter-Rocket Artillery and Mortar Systems (C-RAM) Integration. Work will be performed in Huntsville, AL and is expected to be complete by Sept. 28/08. This was a sole source contract initiated on May 4, 2006 by The U.S. Army Aviation and Missile Command in Redstone Arsenal, AL (W31P4Q-06-D-0029).

Under a $38 million contract awarded in October 2005, Northrop Grumman was tasked with integration, deployment, and installation of the C-RAM command and control systems architecture; assisted in integrating the command and control with target acquisition and tracking radars, warning, and response subsystems; and trained soldiers to operate and support the “system of systems.”

Sept 13/06: FY 2006. A $369.1 million firm-fixed-price modification under previously awarded contract N00024-04-C-5460 for Phalanx CIWS and associated spares for FY 2006 US Navy (51%) and US Army (35%) purchases, and the Governments of Pakistan (12.8%) and Australia (1.2%) under the foreign military sales requirements.

Work will be performed in Louisville, KY and is expected to be complete December 2009. Contract funds in the amount of $7.3 million will expire at the end of the current fiscal year.

FY 2006: USA, Pakistan, Australia

Aug 9/06: Centurion. A $6.9 million firm-fixed-price modification under previously awarded contract (N00024-04-C-5460) for land-based Phalanx weapon system ancillary equipment. This is the land-based configuration for the US Army’s counter-rocket, artillery, mortar program. Work will be performed in Louisville, KY and is expected to be complete by April 2007.

Feb 7/06: Support. Raytheon Missile Systems in Tucson, AZ received a $169.9 million firm-fixed-price requirements contract for performance-based logistics in support of the Phalanx CIWS.

This contract combines procurements between the US Navy (74.79%); US Coast Guard (4.6%); and the Governments of Australia (5%); Israel (5%); New Zealand (5%); Japan (1%); United Kingdom (1%); Canada (1%); Taiwan (1%); Poland (1%); Bahrain (0.4%); and Saudi Arabia (0.21%) under the Foreign Military Sales Program. Work will be performed in Louisville, KY (90%), and Tucson, AZ (10%), and is expected to be complete by April 2011. This contract was not competitively procured by the Naval Inventory Control Point in Mechanicsburg, PA (N00104-06-D-L007).

January 2006: UK. The British Defence Logistics Organization’s (DLO) Maritime Gunnery and Missile Systems (MGMS) Integrated Project Team signs a 10-year support, maintenance and availability contract with DML, with incentives to increase the number of days the guns are available and fit for use.

On Oct 31/06, the DLO noted that the target time each Phalanx spends having operational defects fixed was 1.56 days per operational mount, but DML was already achieving 1.24 days. As of October 2006, there were 36 Phalanx guns in service on Royal Navy Ships and Royal Fleet Auxiliaries; an upgrade of these units to Mk 15 Phalanx 1B status is slated to begin entering service by May 2008.

British long-term support

Oct 24/05: Northrop Grumman announces that the U.S. Army has selected them the prime contractor for the Counter-Rocket, Artillery, Mortar (C-RAM) Integration and Fielding contract. Northrop Grumman’s Mission Systems sector is developing a systems architecture and integrating the C-RAM target acquisition, fire control, warning and engagement subsystems. Under a $38 million contract, Northrop Grumman will first deploy a mortar-attack warning capability and install that capability at 8 forward operating bases in Iraq. Northrop Grumman Mission Systems will also train soldiers to use the system and integrate an intercept subsystem as it is fielded. Northrop Grumman release | DID article.

FY 2005

Canada; Portugal. Phalanx CIWS

May 16/05: FY 2005. A $45 million not-to-exceed, firm-fixed-price modification to previously awarded contract (N00024-04-C-5460) for Block 1B Upgrade and Conversion performance enhancement equipment for United States and Portuguese Navy Phalanx Close-In Weapon Systems (CIWS). This contract combines purchases for the U.S. Navy (31%) and the government of Portugal (69%) under the Foreign Military Sales program: 3 upgrade and conversions for the U.S. Navy, and 3 Phalanx MK-15 CIWS and ancillary hardware are planned in support of Portugal requirements.

Work will be performed in Louisville, KY and is expected to be complete by December 2007.

FY 2005: Portugal, USA

March 24/05: A $5.3 million firm-fixed-price contract modification to previously awarded contract N00024-04-C-5460 for production of 99 sets of Reliability and Maintainability Spares in support of the MK 15 Phalanx Close In Weapon System (CIWS) program. Work will be performed in Tucson, AZ (10%) and Louisville, KY (90%), and is expected to be complete by July 2007.

March 3/05: A not to exceed $129 million firm fixed price modification to previously awarded contract N00024-04-C-5460 for the Phalanx Close In Weapon System (CIWS). The contract includes Block 1B upgrades, overhauls, parts and support equipment, and other ancillary equipment. This equipment will be installed aboard several Arleigh Burke Class Destroyers (DDGs 107, 108, 109, 110, 111 & 112) and backfit upon various classes of ships. Additionally, 2 mounts will be provided to the United States Army. Work will be performed in Louisville, KY (90%) and Tucson, AZ (10%), and is expected to be complete by May 2009.

Dec 8/04: Canada exercised a contract option, engaging engage Raytheon Canada to repair, overhaul and upgrade its 16 Phalanx Close in Weapon Systems (CIWS). The contract lasts to 2009 and will cost at least C$ 82.5 million (about $68 million).

The original multi-million dollar contract was signed between Raytheon Canada and Canada’s Department of Public Works and Services in 2003. Under that contract, Raytheon Canada was to provide total life-cycle support for Canada’s 21 Phalanx CIWS systems, including fleet repair work, field service support, overhauls, upgrades, overhaul support material and engineering services.

The new contract extends Raytheon’s service to the Royal Canadian Navy to 2009, and the new C$ 44.6 million modification means the contract is now valued at in excess of $82.5 million. Work, including upgrade to the Mk 15 Phalanx 1B configuration, will be performed in Calgary, Alberta, at Raytheon Canada’s Naval Systems Support (NSS) facility.

Canadian upgrades & support

Additional Readings


Categories: News

JLENS: Co-ordinating Cruise Missile Defense – And More

Tue, 10/14/2014 - 15:32
JLENS Concept
(click to view full)

Experiences in Operation Iraqi Freedom demonstrated that even conventional cruise missiles with limited reach could have disruptive tactical effects, in the hands of a determined enemy. Meanwhile, the proliferation of cruise missiles and associated components, combined with a falling technology curve for biological, chemical, or even nuclear agents, is creating longer-term hazards on a whole new scale. Intelligence agencies and analysts believe that the threat of U.S. cities coming under cruise missile attack from ships off the coast is real, and evolving.

Aerial sensors are the best defense against low-flying cruise missiles, because they offer far better detection and tracking range than ground-based systems. The bad news is that keeping planes in the air all the time is very expensive, and so are the aircraft themselves. As cruise missile defense becomes a more prominent political issue, the primary challenge becomes the development of a reliable, affordable, long-flying, look-down platform. One that can detect, track and identify incoming missiles, then support over-the-horizon engagements in a timely manner. The Joint Land Attack Cruise Missile Defense Elevated Netted Sensor (JLENS) certainly looked like that system, but the Pentagon has decided to end it.

The JLENS System: This is Not Your Grandpa’s Barrage Balloon Radar: height matters.
(click to view full)

In Air Defense Artillery Magazine, Major Thomas J. Atkins sums up the 2-aerostat JLENS system:

“The JLENS system consists of four main components: the aerostats, the radars, the mooring station and the processing station. The [2] aerostats are unmanned, tethered, non-rigid aerodynamic structures filled with a helium/air mix. The aerostats are 77 yards long (three-fourths of a football field) and almost as wide as a football field. The aerostats must be large enough to lift the heavy [volume search or fire control] radars that provide the system’s extended range. The radars are optimized for their separate, specific functions, but weigh several tons each. The surveillance radar searches very long distances to find small radar cross-section tracks before they can threaten friendly assets. The fire control radar looks out at shorter ranges than the surveillance radar, but provides highly accurate data to help identify and classify tracks while providing fire control quality data to a variety of interceptors. The two aerostats are connected to the ground via tethers through which power and data is transmitted. The tethers enables the aerostats to operate at altitudes of up to 15,000 feet and contain power lines, fiber-optic data lines and Kevlar-strengthened strands surrounded by an insulated protective sleeve. The tethers connect to mobile mooring stations that anchor the aerostats to the ground and control their deployment and retrieval. The mooring stations are connected to ground-mounted power plants and processing stations. The processing stations are the brains of the whole system. Each processing station contains an operator workstation, a flight-director control station, weather-monitoring equipment and a computer that controls radar functions and processes radar data.”

JLENS takes 5 days to go from transport configuration to full deployment, or to pack up. Once deployed, Raytheon says that JLENS’ radar can detect and target threat objects at a range of up to 340 miles/ 550 km, depending on the object’s size and radar/ infrared signatures. A 2013 test confirmed the ability to track short-range ballistic missiles in their boost phase.

Raytheon on JLENS

Once deployed, JLENS can work as part of the Joint Theater Air and Missile Defense (JTAMD) system of systems. When integrated with Co-operative Engagement Capability, JLENS can even serve as the linchpin of combined air defense frameworks. An elevated sensor such as JLENS can support ground based air defense units, such as Patriot, Aegis/Standard Missile and SLAMRAAM (ground-based AIM-120 AMRAAM missiles). In the All Service Combat Identification and Evaluation Team (ASCIET) ’99 exercise, a 15m aerostat was deployed with a Cooperative Engagement Capability relay on a mobile mooring station. This relay allowed the Army’s Patriot air defense system and the Navy’s AEGIS weapon system to exchange radar data. Other tests have involved SM-6 and AMRAAM missiles.

Development of missile options like the long-range infrared-guided NCADE missile, which can be mounted on long-endurance platforms like MQ-9 Reaper UAVs and possibly even added to the JLENS system, would add another potential dimension to the platform.

Additional equipment could offer commanders extensive communications relay capabilities, or even area surveillance of the ground. The JLENS program reportedly deployed a smaller 15 meter aerostat to Afghanistan in support of Operation Enduring Freedom. In late November 2003, the Army announced its intention to redeploy the Rapid Aerostat Initial Deployment (RAID) force protection aerostat from Afghanistan to Iraq. RAID, adapted out of JLENS via the Army Rapid Equipping Force, became its own program, involving both flying aerostats and fixed-tower configurations like GBOSS.

A privately-funded January 2013 test mounted similar equipment on a JLENS system, successfully demonstrating its ability to monitor humans walking near roads.

The JLENS Program JLENS Infographic
(click to view full)

JLENS is currently managed as part of the Cruise Missile Defense Systems Project Office at Redstone Arsenal, AL. As of January 2007, Raytheon Company defined and finalized a $1.4 billion contract modification from the U.S. Army for full-scale JLENS system development and demonstration. Raytheon’s Integrated Defense Systems is responsible for the fire control radar and processing station, and work on the program will be performed at Raytheon sites located in Massachusetts, California, Texas and Maryland. TCOM LP, based in Maryland, will develop the 71M aerostat and associated ground equipment.

The US Army’s initial System Acquisition Report submission in 2005, following approval to proceed into System Development and Demonstration (Milestone B), placed the JLENS program’s total value over its lifetime at $7.15 billion. By October 2011, estimates to complete the program had reached $7.56 billion, with about $1.9 billion spent to create 2 demonstration systems. Another $634.1 million in R&D would be required to finish, followed by $5.2 billion in procurement funds to buy the other 14 systems. Back in November 2005, Raytheon VP for Integrated Air Defense Timothy Carey was excited:

“This is going to be one of our foundational programs over the next 10 to 20 years… As we try to grow the business here in New England, it’s important to have these programs that play out over a long period.”

He turned out to be half-right. It won’t be foundational. It will play out over a long time.

In January 2012, the FY 2013 budget proposal called for the cancellation for JLENS’ production phase. The 2 existing systems would remain, to be used for further testing and trialed in exercises, but funding would begin to taper off rapidly after 2013. Recent budgets have included:

FY 2008: $464.9 million, all Research, Development, Testing & Evaluation (RDT&E)
FY 2009: $355.3 million, all RDT&E
FY 2010: $317.1 million all RDT&E
FY 2011: $399.5 million, all RDT&E
FY 2012: $327.3 million, all RDT&E
FY 2013 request: $190.4 million, all RDT&E. This was actually a $34 million increase, to fund the Secretary of Defense directed COCOM Exercise extended test program.

The US Army was planning to field 5 Orbits (1 EMD and 4 Procurement) between FY 2013-2017, and a low-rate production decision was due in September 2012. Procurement would have run for another 10 years. Now it won’t, with just 1 demonstration system protecting Washington, and another in Strategic Reserve.

On the other hand, with border surveillance growing as a security concern amidst Mexico’s Cartel Wars, cruise missile defense still a weakness, and US military operating costs becoming a growing issue, the question is what the Pentagon proposes as a JLENS replacement.

JLENS: Contracts & Key Events FY 2013 – 2015

1 orbit into Strategic Reserve; 1 orbit preps for 3 year surveillance over Washington; AMRAAM & End User tests. JLENS

Oct 13/14: NORAD. Deployment hasn’t begun yet, but Raytheon has completed a series of laboratory tests that demonstrated the ability to covert information from JLENS into a format that can be used by NORAD’s command and control system. Sources: Raytheon, “U.S. Army’s missile-fighting radar-blimp achieves critical milestone”.

June 27/14: Politics. The Washington Free Beacon reports that JLENS will be one of the items under discussion during House / Senate conferencing. The House’s 2015 National Defense Authorization Act (NDAA) slashed JLENS funding from $54 million to $29 million, while the Senate bill kept funding intact. If the Senators can’t bargain JLENS funding back, the House amount would stand:

“A cut will force the [Defense Department] to make some very hard choices. For example, they might have to decide between maintaining the system or integrating JLENS into the National Capital Region’s defense architecture,” one defense expert familiar with JLENS told the Free Beacon…. they might decide to partially integrate the system and just use one of the aerostats…. Those are all bad choices because they defeat the purpose of holding the exercise in the first place….” Sources close to the Senate Armed Services Committee, which did not support the House’s cut to JLENS, said that some GOP senators are moving to protect the system.”

It would appear that privacy advocates like the ACLU and EFF have their golden opportunity, if they want to crimp the program. Sources: Washington Free Beacon, “Congress to Cut Key U.S. Missile Defense System”.

June 26/14: Industrial. JLENS aerostat manufacturer TCOM’s is moving to broaden the scope of its Elizabeth City, NC facility from lighter-than-air manufacturing, assembly, and testing, adding a new Center of Excellence. That will expand the facility’s capabilities to include integration testing of platforms, payloads, sensors, etc.

The larger vision involves an East Coast center that offers unique opportunities for the U.S. and international governments to conduct testing and training on a range of LTA platforms and towers. The CoE will also serve to demonstrate complete turn-key ISR and communications solutions to a broad range of domestic and international customers. Sources: TCOM LP, “TCOM Launches Persistent Surveillance Center of Excellence at Company’s Manufacturing and Flight Test Facility (MFTF) in Elizabeth City, NC.”

June 24/14: Strategic Reserve. Raytheon announces that they’ve finished preparing 1 of the US Army’s 2 JLENS systems for storage in the Strategic Reserve. On the one hand, it isn’t operational. On the other hand, it becomes an item that combat commanders can request. System Design and Development formally ended in Q4 2013. The 2nd system is scheduled to participate in an operational evaluation at Aberdeen Proving Ground, MD in the fall. Sources: Raytheon, “Raytheon completes preparing JLENS radar for contingency deployment”.

March 31/14: GAO Report. The US GAO tables its “Assessments of Selected Weapon Programs“. Which is actually a review for 2013, plus time to compile and publish. With respect to JLENS, the total program cost now sits at $2.78212 billion, which is almost all R&D except for $40.51 million in military construction.

“In August 2013, the Under Secretary of Defense for Acquisition, Technology, and Logistics approved the program’s revised acquisition program baseline, re-designated the program’s acquisition category and delegated milestone decision authority to the Secretary of the Army. The JLENS program satisfied developmental testing and evaluation requirements and is proceeding with plans to execute a 3-year operational combatant command exercise…. Site construction for the deployment of the exercise will begin at Aberdeen Proving Ground after the February 2014 construction contract award. The construction will involve completing aerostat pads, roads, operation and support facilities, and infrastructure. The initial system is expected to arrive at the exercise site location in June 2014 and initial capability delivery is expected for the surveillance radar in September 2014 and the fire control radar system in December 2014.”

Previous reports placed the pads, buildings, utilities and parking for each of the aerostats about 4 miles apart: one at Graces Quarters in Baltimore County, and one at G-Field in Harford County.

Jan 28/14: DOT&E Testing Report. The Pentagon releases the FY 2013 Annual Report from its Office of the Director, Operational Test & Evaluation (DOT&E). JLENS is included, and DOT&E says that expected reliability improvements haven’t panned out as promised. The system still doesn’t meet program requirements for Operational Availability, Mean Time to Repair, or Mean Time Between System Abort. This is both a hardware and a software problem; it can be made worse by poor weather that either reduces radar performance, or forces the aerostat out of the sky entirely.

The Fire Control Radar can support air defense engagements, and “demonstrated a limited target identification capability that partially met requirements and basic interoperability with other air defense systems.” On the other hand, the system still needs to improve non-cooperative target recognition, friendly aircraft identification capabilities, and target track consistency. Very limited budgets and very restricted testing have contributed to these issues.

Jan 16/14: Test deployment. Military officials didn’t get many attendees at a Baltimore County public meeting to explain JLENS, even though 71% of readers in a Washington Post article poll saw the deployment as a threat to privacy. The 2-aerostat system will be tethered 10,000 feet over the Edgewood Area of Aberdeen Proving Ground, and will be visible from downtown Baltimore on a clear day. The FAA will have to set up a “special use airspace” corridor for them during the 3-year test period.

Current JLENS plans involve only the airborne radar, which can spot objects in the air from North Carolina to the Canadian border, and objects on the ground from Virginia to New Jersey. The Army says that they have “no current plans” to mount the MTS-B long-range day/night camera turret that Raytheon deployed in a privately-funded Utah test (q.v. Jan 14/13). They also said that they didn’t intend to share information with federal, state or local law enforcement “but [the Army] declined to rule out either possibility.” Which is to say, their policy could change at any time, by bureaucratic directive. Sources: Baltimore Sun, “Officials present radar blimp plans for Aberdeen Proving Ground” | Washington Post, “Blimplike surveillance craft set to deploy over Maryland heighten privacy concerns”.

Aug 7/13: AMRAAM test. Raytheon announces a successful interception of a target drone by an AIM-120C-7 AMRAAM air-to-air missile, fired from an F-15E Strike Eagle fighter based on a Link-16 cue from JLENS. The July 17/13 intercept was successful, and represents the 1st test of JLENS against low-flying cruise missile targets, as well as the 1st test involving AMRAAM. Other tests have involved PATRIOT and SM-6 surface-to-air missiles.

Raytheon VP Air Warfare Systems VP Harry Schulte touts the firing as something that “enables the world’s most capable air-to-air missile to engage targets at the weapon’s maximum kinematic range.” This is technically true, but probably not operationally true, unless and until the USAF gets clearance to fire on targets based only on JLENS radar ID and Link-16 transmission. Outside the testing range, the fear of a catastrophic mistake creates Rules of Engagement that demand visual identification. Unless the JLENS radar picture is so good that it produces visual ID quality snapshots for transmission, that’s unlikely to change. JLENS would still be very useful in vectoring interceptors for a look, but any aircraft that gets a look won’t be firing at maximum kinematic range. Raytheon.

July 24/13: Testing. Raytheon announces that JLENS has finished a 6-week End User Test with the US Army, which included a stretch of 20 days of continuous operation and “a number of complex scenarios that replicated an operational environment.”

JLENS product manager Dean Barten is pleased, and says the next step involves deployment to Aberdeen Proving Ground for an operational evaluation. Deployment usually follows successful OpEval. Raytheon.

Feb 11/13: To Washington. The Washington Post reports that NORAD is working to integrate JLENS with the surveillance system over Washington, DC. The JLENS are expected to arrive by Sept. 30/13:

“A “capabilities demonstration,” as the test is called, is expected to last as long as three years. Its location is being withheld, pending notification of lawmakers and others.”

Jan 14/13: EO test. Raytheon continues to fund JLENS demonstrations, and touts a recent exercise that used the JLENS’ MTS-B day/night surveillance and targeting turret, despite heavy smoke from recent, naturally-occurring forest fires. While the MTS-B visually tracked targets, and watched Raytheon employees simulate planting a roadside land mine, the JLENS simultaneously tracked surface targets with its integrated radar system. Raytheon.

Dec 5/12: Testing. Raytheon continues to tout recent tests, including a recent exercise that used JLENS to simultaneously detected and tracked “double-digit [numbers of] swarming boats, hundreds of cars and trucks, non-swarming boats and manned and unmanned aircraft” all at once. Raytheon.

Oct 23/12: GAO. The Government Accountability Office releases a report on the 15 aerostat and airship programs underway at the Department of Defense. They estimate that $7B worth of spending has been allocated to this category, most of which was spent on R&D. JLENS and its peers see steep declines in their budgets beyond FY 2013.

The GAO by definition likes centralizated oversight, so they object to the lack of coordination between all these programs. Actually, that’s a pretty normal and even healthy state of affairs for new technologies.

Oct 5/12: Support. Raytheon in Andover, MA receives a $59 million cost-plus-incentive-fee contract modification, covering JLENS support until Sept 28/13. One bid was solicited, with 1 bid received by US Army Space and Missile Defense Command in Huntsville, AL (DASG60-98-C-0001).

FY 2012

Budget cuts and restructuring; DOT&E highlights reliability issue; PATRIOT, SM-6, and small boat detection tests. JLENS attack scenario
(click to view full)

Sept 21/12: SM-6 test. JLENS is part of a test involving the new SM-6 naval defense missile. During the test, JLENS’ fire-control radar acquired and tracked a target that mimicked an anti-ship cruise missile, then Cooperative Engagement Capability (CEC) was used to pass the data on to the firing ship. The missile used that targeting data to move into range of its own radar, found the target, and destroyed it. Raytheon.

Sept 10/12: Boat test. Raytheon touts JLENS performance during a recent test at Great Salt Lake, UT, and makes the case for JLENS’ affordability. During the tests, JLENS simultaneously detected and tracked multiple speedboats, which simulated a real-world swarming scenario with a series of tactical maneuvers at low and high speeds. The test is a good argument for JLENS usefulness protecting key ports. As for affordability, Raytheon VP David Gulla says that:

“JLENS is affordable because during a 30-day period, one system provides the warfighter the same around-the-clock coverage that it would normally take four or five fixed-wing surveillance aircraft to provide… JLENS is significantly less expensive to operate than a fixed-wing surveillance aircraft because it takes less than half the manpower to operate and has a negligible maintenance and fuel cost.”

All true, but if the system is at less than 1/4 of reliability goals (vid. March 2012 DOT&E entry), many of these dollar savings disappear quickly.

April 30/12: JLENS/ PATRIOT test. The promised firing test takes place during an exercise at the Utah Training and Test Range. Raytheon says that:

“In addition to destroying the target drone, initial indications are that the JLENS-Patriot systems integration met test objectives.”

That will help make the case for JLENS as a very low operating cost option for cruise missile defense, but is it too late? Raytheon | Lockheed Martin.

March 30/12: SAR – end JLENS. The Pentagon’s Selected Acquisitions Report ending Dec 31/11 includes JLENS, but not in a good way. It would cut $5.917 billion from the program by removing all 14 production systems, and leaving just the 2 demonstrators:

“The PAUC increased 215.7% to the current APB, due primarily to a reduction in the total program quantities from 16 to 2 orbits. The FY 2013 President’s Budget suspended the production program of 14 orbits; however, the two engineering and manufacturing development orbits will be completed and delivered, which will allow the Department to achieve remaining technical knowledge points in the design and development of the program and preserve options for the future. The increase in the PAUC is also attributable in part to a previously reported extension of the development program and an increase in development funding to resource an extended test program and other activities to support participation in an exercise.”

End of JLENS Production

March 30/12: GAO report. The US GAO tables its “Assessments of Selected Weapon Programs” for 2012. For JLENS, the report cites early problems with the fire control radar software, and the September 2010 destruction of a JLENS system, as key issues that have put the program behind. The JLENS program has also been affected by alignment with the Army’s Integrated Air and Missile Defense program. The IAMD program is aiming for a standard set of interfaces between systems such as JLENS and other sensors, weapons, and back-end command-and-control systems, in order to provide a common air picture for everyone. That forced the Army to extend the JLENS development phase by 12 months, which also drove up program costs.

The question is whether JLENS will proceed to production. With about $1.9 billion spent, the GAO estimates that the program needs $5.95 billion more to field all 14 twin-aerostat systems: $634.1 million in R&D, and $5.2 billion in procurement. A low-rate production decision is now due in September 2012, but the Pentagon’s 2013 budget proposals have put a cloud over that milestone. If they change their minds and go ahead, a full-rate production would be expected in November 2014, with procurement running until 2022.

March 2012: DT&E SE test report. The Pentagon’s Developmental Test and Evaluation and Systems Engineering FY 2011 Annual Report covers JLENS, noting the possible scenarios for the program and flagging reliability issues:

“One scenario is completion of the program of record resulting in low-rate initial production (LRIP), FRP, and full operational capability. The second scenario eliminates program funding starting in FY 2012 [DID: the direction of the Pentagon's FY 2013 pre-budget submission], and the third scenario is to enter an operational exercise prior to an LRIP decision… The system entered DT&E with reliability less than the goal to meet reliability growth requirements. The estimated reliability prior to entering DT&E was approximately 15 hours mean time between system abort (MTBSA). The goal was to enter DT&E with 70 hours MTBSA.”

Feb 13/12: Mostly dead. The Pentagon releases its 2013 budget request, and leaves JLENS almost terminated, except for some forthcoming exercises. As Miracle Max knows, there’s a difference between “mostly dead” and “all dead.” The thing is, it takes a miracle to make the difference meaningful. JLENS is no longer listed in the programs by weapon system, but it does get an entry in the overview book. An excerpt:

“The Army will restructure JLENS and assume a manageable risk in Cruise Missile Defense, and subsequently rely on [DID: more expensive to operate] Joint aerial assets to partially mitigate any associated capability gaps. Additionally, this decision will allow more time for the Army and the Department to review total program affordability while the program conducts Combatant Commander exercises. The proposed savings in FY 2013 is $0.4 billion and totals $2.2 billion from FY 2013 – FY 2017.”

Jan 26/12: Budget cut. The FY 2013 budget under Secretary of Defense Panetta contains a raft of program cuts and delays, including the proposed “curtailment” of JLENS, “due to concerns about program cost and operational mobility,” as a program that was “experiencing schedule, cost, or performance issues.”

The phrasing of this statement is ambiguous at all levels. Why “curtailment” and not “terminate”, since that seems to be the intent? Disappointment about operational mobility also seem odd, given that the entire system was always meant to be a fixed aerostat that can be shifted with a bit of time and effort, in order to monitor a wide but high-value area. The US Army’s LEMV program is a mobile airship, but it isn’t designed to carry the same level of air and ground radar sensors, or cover the same area. Meanwhile, programs like the High Altitude Airship and ISIS describe future technologies that aren’t even close to fielding. Pentagon release | “Defense Budget Priorities and Choices” [PDF]

Jan 25/12: Testing, testing – my patience. Utah’s Deseret News [the correct spelling] reveals that JLENS is having testing problems with golden eagles, as well as local NIMBY(Not In My Back Yard) residents. The key problem involves approval to launch drones from Eskdale in Snake Valley, in order to test JLENS. In response, the Dugway Proving Ground has sought civil FAA permission to launch from its own property, and secured temporary approval for 6 flights in 2011. Problem 1 is that temporary approval will lapse soon. Problem 2 involves runaway bureaucracy:

“Because the launch site is technically changing from Eskdale to Dugway, the Army has to detail and gather public input to obtain a modified environmental assessment that will consider impacts to nesting golden eagles at Dugway as well as other potential impacts to wildlife… Launching from Dugway will necessitate a round-trip flight of the drones, which will still fly over the Snake Valley before returning to Army property, rather than a one-way launch of the plane from Eskdale… Sometime later this year, JLENS will conduct a live-fire exercise over the Utah Test and Training Range north of I-80 where a drone will be shot down by a Patriot missile after it is detected by one of the aerostats.”

Nov. – Dec. 2011: Testing. JLENS successfully completes its 1st set of tracking tests at the Utah Training and Test Range, tracking simulated low-flying cruise missiles, plus live UAVs, fighter aircraft, and moving surface targets on ground and water. It also demonstrated its ability to communicate Link-16 targeting data, and interface with IFF combat identification systems.

A live-fire Patriot missile test is expected in late 2012. In the meantime, testing continues in Utah and at White Sands Missile Range, NM. Raytheon release.

Dec 13/11: Infrastructure. Raytheon announces that they’ve established a JLENS test site at White Sands Missile Range, NM. 2012 is expected to see a Patriot missile firing, cued by JLENS. White Sands is the place for that.

FY 2009 – 2011

Prototype destroyed in collision. Cost increases. Testing…
(click to view full)

July 25/11: Testing. Raytheon announces a successful JLENS endurance test at the Utah Training and Test Range near Salt Lake City. While 30 days is a program goal, Raytheon doesn’t say how long the test was for. A subsequent Oct 11/11 release touts a 14-day test.

April 15/11: SAR. The Pentagon’s Selected Acquisitions Report ending Dec 30/10 includes JLENS as a program with significant-class cost increases under Nunn-McCurdy legislation:

“Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System (JLENS) – The PAUC (Program Acquisition Unit Cost, includes amortized R&D) increased 17.9 percent and the APUC(Average Procurement Unit Cost, no R&D) increased 13.3 percent to the current APB, because the development program was extended six months due to delays in testing resulting from engineering challenges. The increases in unit costs are also attributable to the addition of preplanned product improvements for reliability, safety, affordability, or producibility of the JLENS systems.”

Having your prototype destroyed in a collision is certainly a challenge.

SAR – major cost breach

April 14/11: Testing. Raytheon announces that the JLENS aerostat aloft at the Utah Test and Training Range has successfully demonstrated tracking targets of opportunity in Salt Lake City, Utah’s air space.

April 13/11: WIRED Danger Room reports:

“Last fall at a South Carolina test facility, inclement weather caused a Skyship 600 airship to come loose from its tether and crash into one of the Army’s forthcoming prized spy balloons. [The JLENS] was destroyed, along with the Skyship. What did the Army do? It upped its funding requests for the JLENS. Inside The Army, which first reported the JLENS-Skyship collision, finds that the Army is asking Congress to add $168 million for the program next year, on top of an original request of $176 million.”


Feb 9/11: Testing. Raytheon announces that JLENS’ radar demonstrated its ability to transmit data from the aerostat at the Utah Test and Training Range, while deployed to an altitude of 10,000 feet. It all seems like baby steps, but that’s how these things proceed. Especially when dealing with a system that has to carry required power etc. up the aerostat’s tether.

Sept 15/10: PATRIOT. Lockheed Martin Corp. in Grand Prairie, TX receives a $7.1 million firm-fixed-fee and cost-plus-fixed-fee contract for “PAC-3 Integrated Fire Control.” Lockheed Martin representative confirmed that this contract is “for integration of the [Patriot] PAC-3 Missile Segment with the Joint Land Attack Cruise Missile Defense Elevated Netted Sensor [JLENS].”

Work is to be performed at Grand Prairie, TX; White Sands Missile Range, NM; and Chelmsford, MA, with an estimated completion date of Aug 30/12. One bid was solicited with one received (W31P4Q-10-C-0304; Serial #1936). See also FBO solicitation.

April 14/10: Testing. The US military launches 2 unmanned 233 foot JLENS aerostats about 80 miles west of Salt Lake City, UT. Several more tests are proposed for Utah later in the year, including over the remote northern portion of the Great Salt Lake and parts of the Snake Valley, which are remote and serve as good stand-ins for environments in Afghanistan.

Summer 2009 flight tests near Elizabeth City, NJ were limited to 3,000 feet, but the Utah tests will go up to 10,000 feet. Associated Press.

March 30/10: GAO Report. The US GAO audit office delivers its 8th annual “Defense Acquisitions: Assessments of Selected Weapon Programs report. With respect to JLENS, it says:

“Although the JLENS design appears stable, the potential for design changes remains until the maturity of JLENS components have been demonstrated. For example, the JLENS program continues to define, develop, and design the mobile mooring station used to anchor the aerostat during operations. Although the mobile station is based on a fixed mooring station design, the program has yet to demonstrate its mobility. The mobile mooring transport vehicle is still being designed and the program office expects the survivability requirements for the vehicle to change. This may require the program to add armor to the vehicle. According to program officials, the combined weight of the mooring station and an up-armored vehicle would exceed the maximum allowed for roads in the United States and in a operational theater.

“…The cost and schedule of the JLENS program could be negatively affected by the Army’s [Integrated Air and Missile Defense] program… tasked with developing a standard set of interfaces between systems such as JLENS and other sensors, weapons, and… components to provide a common air picture. As part of the IAMD strategy, the Army plans to extend the system development and demonstration phase of the JLENS program by approximately 12 months and delay low-rate initial production until fiscal year 2012.”

March 26/10: Infrastructure. Walbridge in Detroit, MI won a $40.7 million firm-fixed-price contract to design & build 3 tactical equipment maintenance facilities (TEMFS) at 3 close but separate sites in Fort Bliss, TX. Supported projects will include a sustainment bridge, a JLENS aerostat battery, and a Terminal High-Altitude Area Defense (THAAD) missile battery.

Each TEMFS will provide a complex with repair and maintenance bays, equipment and parts storage, administrative offices, secure vaults, oil storage buildings, hazardous material storage, and other supporting facilities such as organizational storage buildings. Work is to be performed in Fort Bliss, TX, with an estimated completion date of Dec 30/11. Bids were solicited via World Wide Web, with 4 bids received.

Aug 25/09: Scheduled date for TCOM to fly a fully equipped JLENS 71M aerostat to 3,000 feet, in its first test flight. Source.

CEC Concept
(click to enlarge)

June 5/09: CEC. Science Applications International Corp. in St. Petersburg, FL wins a $5.6 million firm-fixed-price contract for the fabrication, assembly, and testing of compact solid state Cooperative Engagement Capability (CEC) antennas. These small, lightweight antennas would support mobile applications of the CEC system, including the Marine Corps Composite Track Network (CTN) and the U.S. Army’s Joint Land Attack Cruise Missile Defense Elevated Netted Sensor aerostat (JLENS). The contract includes options which, if exercised, would bring the cumulative value of this contract to $18.4 million.

Work will be performed in St. Petersburg, FL and is expected to be complete by June 2010. This contract was competitively procured through full and open competition via the Navy Electronic Commerce Online and Federal Business Opportunities websites, with 2 proposals received by the Naval Sea Systems Command in Washington, DC (N00024-09-C-5213).

Nov 19/08: CDRR. Raytheon successfully passes critical design readiness reviews (CDRR) on its final 2 prime items, the surveillance radar (SuR) and the communications and processing group (CPG). These prime items are prerequisite to the overall JLENS Orbit CDR planned for later in 2008.

System testing is still scheduled to begin in 2010, with SDD program completion in 2012. Raytheon release.

FY 1998 – 2008

Demo program. SDD. Preliminary Design Review. JLENS moored
(click to view full)

March 31/08: PDR. Raytheon’s JLENS has successfully completed Orbit preliminary design review (PDR), which reviewed all aspects of JLENS design maturity. The decision clears the program to move ahead with detailed design, and JLENS system testing is scheduled to begin in 2010, with SDD program completion scheduled for 2012.

Each JLENS Orbit consists of 2 systems: a surveillance system and a fire control system, which includes a long-range surveillance radar and a high-performance fire control radar integrated onto a large aerostat. These are connected by cables to the ground-based mobile mooring station and communications processing group. Raytheon release.


March 4-6/08: The US Army reports that a group of Soldiers from Fort Bliss, TX have been brought to Raytheon in Huntsville, AL for early user assessment of the JLENS communication and control station. The 2nd early user assessment is scheduled in October 2008.

Neal Tilghman, a principal human systems engineer at Raytheon Warfighter Protection Center, says the goal is to get user feedback on the design concepts and layout of the JLENS communication and control station: “We’re in the early prototype stage and we want to head off any early issues, design concerns, in the early phase of the program…”

April 11/07: SFR. Raytheon announces that JLENS has completed a successful system functional review. The primary objective of the review was to ensure complete allocation of system level requirements to the various subsystems or prime items. The 3-day technical review evaluated system requirements and functions for each of the prime items, including the fire control radar, surveillance radar, processing station, communication system, and aerostat platform. This successful completion allows the program to progress to the preliminary design phase.

Jan 11/07: SDD. Raytheon Co. in Andover, MA received a $144.3 million increment to a $1.43 billion cost-plus-incentive-fee contract for acquisition of the Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System, System Development and Demonstration Program.

Work will be performed in Andover, MA (47%), El Segundo, CA (28%), Long Beach, CA (6%), Columbia, MD (5%), Elizabeth City, NC (5%), Huntsville, AL (3%), Laurel, MD (2%), Dallas, TX (14%), Austin, TX (1%), Alexandria, VA (1%), and Greenlawn, NY (0.9%), and is expected to be complete by March 31, 2012. This was a sole source contract initiated on Oct. 27, 2005 by the U.S. Army Space and Missile Defense Command at Redstone Arsenal, AL (DASG60-98-C-0001).

Jan 3/07: Raytheon announces that negotiations have finalized “a contract modification for system development and demonstration of the Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System (JLENS).” The contract is described as $1.4 billion in this release.

System Development (SDD)

Nov 15/05: Raytheon announces “a $1.3 billion contract modification from the U.S. Army for system development and demonstration of the Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System (JLENS).”

Oct 20/05: Raytheon announces that JLENS completed a successful system functional review (SFR) in late September 2005. This technical review is the last major milestone for the technology development acquisition phase of the program, and marks the readiness of the program to enter the system development and demonstration (SDD) phase.

The primary objective of the SFR was to ensure complete allocation of system level requirements to the system prime items. The two-day technical review included an overview of the JLENS system and in-depth reviews of each of the prime items, to include the fire control radar, surveillance radar, processing station, communication system, and platform.

During SDD, all hardware, software and logistics support required to deploy the system will be developed and will undergo extensive testing to ensure the system meets its requirements.

June 23/05: Raytheon Co. in Bedford, MA received a $79.5 million modification to a cost-plus-incentive-fee contract for JLENS. Work will be performed in Bedford, MA and is expected to be complete by July 31, 2010. This was a sole source contract initiated on Dec. 29, 2004 by the US Defense Space and Missile Command in Huntsville, AL (DASG60-98-C-0001).

June 10/05: Sensors. FLIR Systems Inc. in Wilsonville, OR received the full delivery order amount of $32.9 million as part of a firm-fixed-price contract for FLIR Star SAFIRE sensors for the Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System. Work will be performed in Wilsonville, OR and is expected to be complete by March 31, 2006. This was a sole source contract initiated on June 6, 2005 by the U.S. Army Space and Missile Defense Command in Huntsville, AL (W9113M-05-D-0002).

Note that this contract may actually be associated with the derivative RAID system. A subsequent award of this type made under this contract on Sept 26/06 refers explicitly to “StarSAFIRE Sensors for the Rapid Aerostat Initial Deployment System.”

Jan 30/98: H&R Co., a joint venture of Hughes Aircraft Co. and Raytheon Co. located in El Segundo, CA, won an $11.9 million increment as part of an estimated $292 million (if all options are exercised) cost reimbursement, cost-plus-incentive-fee, cost-plus-award-fee, and cost-plus-fixed-fee completion contract for the Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System (JLENS) Demonstration Program. This is something less than JLENS would eventually become, more like a prototype for what would eventually deploy as the smaller RAID system.

Work will be performed in El Segundo, CA (44%); Bedford, MA (44%); Columbia, MD (10%); San Bernardino, CA (1.5%); and various locations in the United States (0.5%), and is expected to be complete by March 30, 2002. There were 3 bids solicited on June 27, 1997, and 3 bids were received by the U.S. Army Space and Missile Defense Command in Huntsville, AL (DASG60-98-C-0001). The DefenseLINK release said that:

“The program has three primary objectives. The first is mitigation of the risk associated with the execution of the program; the second is design, development, procurement, fabrication, integration, test, demonstration, and maintenance of a system which meets the performance specification; and the third is to provide an operational “leave behind” system for user evaluation and for use in the event of a contingency deployment.”

Demo program

Additional Readings & Sources

Categories: News

Greek F-16 & Weapons Buys Taking Off

Tue, 10/14/2014 - 15:28
Greek F-16D, F-16C
(click to view full)

In 2005, Greece terminated its $6 billion Eurofighter contract in favor of F-16s. Now that sale has taken the next step, as Greece has submitted its order for the aircraft and ancillary electronics, spares, and weapons, to match rival Turkey’s recent F-16 purchases and upgrades.

On October 25/05, the Defense Security Cooperation Agency (DSCA) formally notified Congress [PDF] of a possible Foreign Military Sale to Greece of 40 F-16C/D Block 52+ aircraft as well as associated equipment and services. That sale continues to move forward, item by item; the total value, if all options are exercised, could be as high as $3.1 billion. Greece’s full “Peace Xenia IV” order request now features:

Peace Xenia IV

Another 30 F-16C/D Block 52+ aircraft with F100-PW-229 engines, conformal fuel tanks to let them cover Cyprus, and APG-68v9 radars (option for 10 declined, now 20 single-seat F-16C Block 52s and 10 2-seat F-16D Block 52s). Plus:

  • 42 Joint Helmet Mounted Cueing Systems (JHMCS);
  • 40 AN/AVS-9 Generation III Aviation Night Vision Goggles;
  • 190 LAU-129/A Launchers;
  • 48 Link-16 Multifunctional Information Distribution System-Low Volume Terminals (MIDS-LVT);
  • 3 Link-16 Ground Stations;
  • 10 LANTIRN Targeting pods (previous-generation equipment – many air forces now use LITENING pods or Sniper XR on their F-16s);
  • 11 Reconnaissance pods (they turned out to be Goodrich DB-110s, with…);
  • 2 Reconnaissance Ground Stations;
  • 40 APX-113 Advanced Identification Friend or Foe (IFF) systems;
  • 43 AN/ALQ-187 Advanced Self-Protection Integrated Suites;
  • 6 spare F100-PW-229 engines;
  • 3 APG-68v9 spare radar sets;
  • 4 AGM-154C Joint Standoff Weapons (JSOW);
  • 6 Joint Direct Attack Munitions (JDAM with 3 BLU-10 and 3 MK-84 bomb bodies);
  • 4 Wind Compensated Munitions Dispenser (GPS/INS-guided cluster bombs);

The request also covers associated support equipment, software development/integration, modification kits, capability to employ a wide variety of munitions, spares and repair parts, flight test instrumentation, publications and technical documentation, personnel training and training equipment, U.S. Government and contractor technical and logistics personnel services, and other related support requirements.

The estimated cost is $3.1 billion.

The DSCA reports that this modernization will be provided in accordance with, and subject to the limitation on use and transfer provided under the Arms Export Control Act, as amended, and as embodied in the Letter of Offer and Acceptance. They also take care to note that this proposed sale will not adversely affect either the military balance in the region, or U.S. efforts to encourage a negotiated settlement of the Cyprus questions.

The principal contractors will be:

  • BAE Advanced Systems, Greenlawn, NY
  • Lockheed Martin Aeronautics Company, Fort Worth, TX
  • Lockheed Martin Missiles and Fire Control, Orlando, FL
  • L3 Communications, Arlington, TX
  • Boeing Corporation (McDonald Douglas Corporation), St. Louis, MO
  • Raytheon Electronic Warfare Systems Company, Goleta, CA
  • Raytheon Missile Systems, Tucson, AZ
  • Northrop-Grumman Electro-Optical Systems, Garland, TX
  • Northrop-Grumman Electronic Systems, Baltimore, MD
  • Pratt & Whitney United Technology Company, East Hartford, CT

Offset agreements associated with this proposed sale are expected. They are undetermined at this time but will be defined in negotiations between the purchaser and contractors.

Implementation of this proposed sale will not require the assignment of any additional U.S. Government or contractor representatives to Greece.

Contracts and Ancillary Developments FY 2009 – 2014

Deliveries; Requests for engine support; Will Greece lease some F-16s to Bulgaria to help pay for fleet modernization?

Greek F-16D-52s
(click to view full)

The Hellenic Air Force has ordered a total of 170 F-16s. All are F-16C/Ds, but the initial 2 tranches of 80 F-16 Block 30 and Block 50 aircraft are powered by GE’s F110-110/129 engines. The next 2 “Peace Xenia III/IV” orders covered 90 Block 52 planes, powered by Pratt & Whitney’s F100-229 engine. This adds maintenance costs, but ensures that engine problems can’t ground the HAF’s fighter fleet.

Oct 11/14: Bulgaria? Bulgaria has been looking to purchase 6-8 NATO-compatible fighters since 2008, but their economy is small and so is their defense budget. Even that won’t replace their existing fleet of 6 MiG-21s, 15 MiG-29s, and 14 Su-25s, most of which will need to retire soon. Katherimini reports that the Bulgarians are looking at rentals, and says that Greece may be willing to step in with its F-16s. The idea is that the lease could bring Greece several hundred million euros, which they could use to upgrade some of their other F-16s.

The bad news for Bulgaria is that Greece doesn’t seem to be offering its newer Block 52s, which means that Bulgaria would probably be getting 25 year old Peace Xenia I F-16C/D Block 30s, powered by GE’s F110 engine. They can carry reconnaissance pods and fire AGM-88 HARM radar-killer missiles and AIM-7 Sparrow medium range air-to-air missiles, but they would need further upgrades to use weapons like the far superior AIM-120 AMRAAM medium range air-to-air missile, or GPS-guided weapons like JDAM, JSOW, etc. If Greece leased Bulgaria 6-8 of its 40 GE F110-powered F-16 C/D Block 50s instead, all of those limitations would vanish.

Note that Saab’s JAS-39C/D Gripen fighters already have a proven leasing history, and offer a wider range of capabilities than F-16 Block 30s. They are flown that way by fellow NATO members the Czech Republic, Hungary, and soon by Slovakia. Sources: Kathimerini, “?????? ????????? F-16 ??? ?????????”.

July 11/13: Engines. The US DSCA announces [PDF] Greece’s official export request for F100-PW-229 engine spares and services – basically the proposal Greece’s government approved back in January (q.v. Jan 2/13 entry). Spare parts and services include: Inlet /Fan Modules, Core Engine Modules, Rear Compressor Drive Turbines, Fan Drive Turbine Modules, Augmentor Duct and Nozzle Modules, Gearbox Modules, and other forms of US Government and contractor support. The estimated cost is up to $250 million.

Given only 1 manufacturer, we fail to understand what “The proposed sale will not be for one sole source contract for this sale” means. The DSCA does say that the sale won’t require any additional support representatives in Greece.

DSCA request: Engine parts & support

Jan 2/13: Engine spares. The Greek Governmental Council on Foreign Policy and National Defence unanimously approves Defence Minister’s Mr. Panos Panagiotopoulos proposal and decided the procurement of spare parts for 67 F100-PW-229 engines. Greek Ministry of Defence:

“The aforementioned provision will be effected by interstate agreement with the pertinent United States’ Government Authority and the total cost will amount up to 183.7 million Euros, apportioned to 5 years.”

April 29/11: The US Defense Security Cooperation Agency announces [PDF] Greece’s formal request for spare parts and services for the F100-PW-229 engines equipping some of its F-16 aircraft. This equipment includes: Inlet/Fan Modules, Core Engine Modules, Rear Compressor Drive Turbines, Fan Drive Turbine Modules, Augmentor Duct and Nozzle Modules, and Gearbox Modules, plus other support equipment, publications and technical documentation, and related US government & contractor support.

The estimated cost is up to $100 million, but exact figures will depend on a negotiated contract. The funds for the blanket order requisitions FMSO II would come under the Cooperative Logistics Supply Support Agreement, and implementation will not require the assignment of any additional U.S. Government or contractor representatives to Greece. See also F-16.NET.

DSCA request: Engine spares request

Feb 9/11: Training. L-3 Link Simulation & Training in Arlington, VA delivers a 2nd F-16C Block 52+ Aircrew Training Device to the Hellenic Air Force’s Araxos Air Base. The simulator is network-capable with the HAF’s 1st F-16C Block 52+ ATD, which was delivered to the HAF’s Souda Bay military installation in 2005. Fort Worth Star-Telegram Sky Talk.

Aug 26/10: Crash. A Greek F-16C and F-16D collide on a training mission, killing one pilot and seriously injuring another. F-16.NET.


May 23/09: Arrival. Greece’s NET television channel reports that the first 4 new F-16 Block 52+ fighters have arrived in Greece. FOCUS Information Agency.

1st delivery

March 19/09: 1st handover. The Fort worth Star-Telegram reports that Lockheed Martin officials have formally handed over the first F-16s under this contract. Rev. Michael Stearns, a priest at St. Demetrios Greek Orthodox Church of Fort Worth, blessed the aircraft.

2006 – 2008

From initial request to order for 20; Orders for ECM, reece pods, Link-16; Request for various GPS-guided weapons: Enhanced Paveway, JDAM, WCMD, JSOW. HAF F-16D array,
Tenagra 2008
(click to view full)

Sept 29/08: Weapons. The US Defense Security Cooperation Agency announces [PDF] Greece’s formal request to buy 50 Enhanced Paveway II kits, providing dual GPS and laser guidance for for MK-84 2,000 pound bombs. Greece is also requesting sustainment support for its fleet of F-16s, which includes Electronic Combat International Security Assistance Program services, Technical Coordination Program services, minor modifications, repair and return, Aircraft Structural Integrity Program services, spare and repair parts, support equipment, publications and technical documentation, U.S. Government and contractor engineering, technical, and logistics support services, and other related elements of logistical support. The estimated cost is up to $133 million.

The principal contractors will be:

  • Raytheon Missile Systems in Tucson, AZ;
  • Lockheed Martin Aeronautics Company in Fort Worth, TX;
  • Lockheed Martin Missiles and Fire Control in Dallas, TX;
  • Northrop-Grumman Electro-Optical Systems in Garland, TX;
  • Northrop-Grumman Electronic Systems in Baltimore, MD

DSCA adds that “The proposed sale of these weapons and support will bring overall standoff performance up to existing regional baselines. Greece will have no difficulty absorbing these weapons and support into its armed forces.”

Weapons request

May 8/07: DB-110 pods. Goodrich will provide 2 reconnaissance pods, a ground exploitation system and aircraft integration in an initial order from the HAF. The DB-110 collects and transmits digital, real-time images from its electro-optical sensors, and will give the HAF a long-range, high-resolution, stand off imaging capability to support tactical operations. The on-board system can be operated autonomously, with the DB-110 being controlled by the pod’s reconnaissance management system. Imagery is viewed on the F-16’s cockpit video display, enabling the pilot to verify targets and conduct tasks such as battle damage assessment. The real-time display also gives the aircrew the ability to seek out targets of opportunity or select a different route to a selected target. Images can also be transmitted to analysts on the ground in real time for immediate exploitation and analysis. The DB-110 currently has orders from Poland for its F-16 C/Ds, and Japan for its P-3 Maritime Patrol Aircraft.

Goodrich’s Chelmsford, Massachusetts-based facility will be manufacturing and delivering the DB-110 airborne reconnaissance pods. Ground exploitation systems will be built in Goodrich’s facility in Malvern, Worcestershire, U.K. Both sites are part of the company’s ISR Systems division. Goodrich release.

Dec 21/06: 30 F-16s. Lockheed Martin Corp. in Fort Worth, TX received a $931.3 million firm-fixed-price and time and materials contract modification. This action provides for 20 operational single place F-16C Block 50 aircraft and 10 operational two place F-16D Block 52 aircraft under the Peace Xenia IV (Greece) program. This buy will be accomplished under the firm-fixed price portion of the contract; the base $99.7 million unfinalized award in Feb 13/06 was awarded for the long lead requirements only.

This modification increases the undefinitized contract to include all requirements for the production program, and raises the overall ceiling to just over $1.03 billion. At this time, $485.3 million have been obligated. The Headquarters Aeronautical Systems Center, Wright-Patterson Air Force Base, OH issued the contract (FA8615-06-C-6003/P00008).

30 F-16s

Dec 8/06: Weapons. The US DSCA (Defense Security Cooperation Agency) notified Congress of a possible Foreign Military Sale to Greece of F-16C/D precision munitions, as well as associated equipment and services. The total value off this additional sale, if all options are exercised, could be as high as $104 million for JSOW, JDAM, WCMD, and Enhanced Paveway precision strike weapons.

DSCA request: Weapons

Oct 5/06: Link 16. Data Link Solutions in Cedar Rapids, IA receives a $6.2 million firm-fixed-price delivery order for MIDS-LVTs. This contract is for the government of Greece (100%) under the Foreign Military Sales Program. Work will be performed in Wayne, NJ (50%), and Cedar Rapids, IA (50%), and is expected to be complete by April 2009. This delivery order was competitively procured, with synopsis was released via the Federal Business Opportunities web site and 3 offers received via the Space and Naval Warfare Systems E-commerce web site. The Space and Naval Warfare Systems Command, San Diego, CA issued the contract (N00039-00-D-2100).

July 2006: No option. Greece clarifies its long-term spending plans. They will not pick up an option for 10 F-16s, limiting their order to 30. At the same time, any purchase of alternative aircraft was put off beyond the 2011 time frame.

Option declined

July 21/06: ECM. Raytheon Co. in Goleta, CA received a $96 million firm-fixed-price, time and materials contract for the foreign military sales of the advanced self protection integrated suite to Greece. This electronic warfare system will be used on the F-16 aircraft being procured under a separate acquisition by the F-16 program office. Associated spares, support equipment, engineering services, flight test support and data are also being acquired under this contract. Solicitations began March 2006, negotiations were complete July 2006, and work will be complete April 2009. The Headquarters Warner Robins Air Logistics Center at Robins Air Force Base, GA issued the contract (FA8253-06-C-0027).

July 14/06: Industrial. AFP reports that the Greek defense ministry has approved an offset package worth $250 million, as part of the purchase of 30 F-16 fighter aircraft from Lockheed Martin. The deal includes manufacturing projects for Greece’s state and private defense industry. The report also notes that Greece has declined to exercise the option on the additional 10 aircraft, leading to speculation that the 2009 buy will be a 40 aircraft order as the EPA seeks more modern equipment to keep pace with its Aegean rival.

Feb 13/06: Lead-in. Lockheed Martin Aeronautics Co. in Ft Worth, TX received a $99.7 million firm fixed price & time and materials contract. The procurement of 20 operational F-16C Block 50 aircraft and 10 operational two-seat F-16D Block 52 aircraft will be accomplished under the firm fixed portion of the contract. At this time $29.2 million has been obligated. Work will be complete by March 2010. The Headquarters Aeronautical Systems Center at Wright-Patterson Air Force Base, OH issued the contract (FA8615-06-C-6003).

Jan 31/06: Radar. Northrop Grumman Systems Corp. in Linthicum Heights, MD received an initial $63.9 million firm fixed price contract for procurement of 33 AN/APG-68(V)9 Radar Systems. At this time, $31.7 million has been obligated. Work will be complete by March 2010. The Headquarters Aeronautical Systems Center at Wright-Patterson Air Force Base, OH issued the contract (FA8615-06-C-6048).

Additional Readings

Categories: News

China Building More Big Ships for Coast Guard, Navy

Tue, 10/14/2014 - 15:24

  • Back in January Global Times wrote about work reportedly underway in China to build destroyer-sized patrol ships. Back then Chuck Hill speculated [CIMSEC] that such big ships could be used for more offensive purposes. China Defense Blog has purported pictures of the ship under construction.

  • China also plans to get more Type 052D destroyers according to Kanwa Defense Review via Want China Times. They commissioned the 1st ship in class back in March.



Back from Space

  • The USAF’s Boeing X-37B Orbital Test Vehicle is expected [Daily Beast] for its 3rd landing possibly today, at Vandenberg AFB, CA, after almost 2 years in space.

Privacy Matters

  • Today’s video is a TED speech from Glenn Greenwald on why privacy matters. This is a major force shaping the environment intel agencies will operate in. This message needs to sink in, because among other things, it is shaping new technologies in ways only just beginning to emerge.

Categories: News

SM-3 BMD, in from the Sea: EPAA & Aegis Ashore

Mon, 10/13/2014 - 16:20
Land-based SM-3 concept
(click to view full)

SM-3 Standard missiles have been the backbone of the US Navy’s ballistic missile defense plans for many years now, and are beginning to see service in the navies of allies like Japan. Their test successes and long range against aerial threats have spawned a land-based version, which end up being even more important to the USA’s allies.

In July 2008 the US Missile Defense Agency began considering a land-based variant of the SM-3, largely due to specific requests from Israel. Israel currently fields the medium range Arrow-2 land-based ABM (Anti-Ballistic Missile) system, and eventually elected to pursue the Arrow-3 instead of SM-3s. Once the prospect had been raised, however, the US government decided that basing SM-3 missiles on land was a really good idea. The European Phased Adaptive Approach to missile defense is being built around this concept, and other regions could see similar deployments.

EPAA & The SM-3 Option Aegis Ashore
(click to view full)

The European Phased Adaptive Approach aims to use a combination of naval and land-based missile defense systems, which hope to share a common architecture and missile set. The core physical component is a “deckhouse” enclosure, containing the command and control center and a BMD-enhanced SPY-1(D) radar that’s similar to those aboard US Navy destroyers and cruisers. The software will be taken from the Aegis combat system on US Navy ships, beginning with version 5.0.1 and upgrading over time. A connected vertical launching system building will contain 24 SM-3 missiles, which will become more advanced as newer variants are fielded.

The USA is building 3 Aegis Ashore sites: one test site in Barking Sands, Hawaii, USA, and sites in Deveselu Air Base, Romania and Redzikowo, Poland. The GAO estimates that building these sites and bringing them to operational status will cost the USA about $2.3 billion. Our own tracking includes R&D into land-based SM-3 options, and tracks obviously related categories in MDA’s shifting budget lines.

The European Phased Adaptive Approach

The European Phased Adaptive Approach (EPAA) currently envisions 4 phases:

EPAA Phase 1, 2011-2015

In 2011, the US Navy expected to have naval SM-3 Block 1A missiles and ships fully in place, on more BMD-capable ships than the 2 Atlantic Fleet destroyers available in 2009, to pair with land-based AN/TPY-2 radars that are also used in the THAAD system. Another 4 destroyers are being forward-deployed to Rota, Spain in FY 2014-2015. Unfortunately, naval SM-3 Block 1 missiles cannot cover the Czech Republic at all, and can offer only limited coverage for Poland.

The Obama administration bowed to Russian pressure and picked the THAAD system’s AN/TPY-2 radar as the system’s ground accompaniment, to limit the distance they could see into Russian airspace. The Russians simply saw weakness, and kept up the pressure, but couldn’t make any more headway. Turkey agreed to host the AN/TPY-2 radar near Diyarbakir in SE Turkey, though they added conditions that the data must not be shared with Israel.

This will be the only EPAA option until 2015, which is beyond the Obama administration’s current term of office. During that interim period, THAAD continues to receive upgrades. At sea, AEGIS BMD system 4.x is being rolled out beyond USS Lake Erie [CG 70], offering some capability improvements on board ship, and laying an open architecture foundation for future upgrades.

In parallel, NATO has fielded an initial version Active Layered Theatre Ballistic Missile Defence (ALTBMD) command and control architecture. They declared an “interim” BMD capability in May 2012, after a successful multinational test.

ALTBMD will also have European components to draw upon, including the national early-warning system under development by France. In August 2012, Poland announced that it was pursuing its own national BMD system, which may mirror many of France’s components. France (11 systems) and Italy (6 systems) can also contribute with their land-based SAMP/T Mamba and its Aster-30 missile, which is designed to address threats in the SRBM (<1,000 km) class.

On the naval front, the Netherlands is upgrading its 4 top-tier air defense frigates with ballistic missile tracking capability, and its ships are compatible with SM-3 missiles if they decide to purchase some. Elsewhere, Aster-30s are already found on advanced air defense destroyers: the Franco-Italian Horizon Class, and Britain's Type 45 Daring Class. The naval system hasn't been tested against ballistic missiles yet, but the systems could all be upgraded to do so.

EPAA Phase 2, 2015-2018 In Parallel:
SAMP/T launch
(click to view full)

If progress continues per plan, 2015 would see advances on 2 fronts.

One front involves improved SM-3 Block 1B missiles, which will expand the range of coverage for American ships. Serious orders for the Block 1B missile began in 2011, but technical issues have delayed full production. That delay means that US Navy ships based in Europe will be competing with other priorities in Asia and around the USA, as they seek to host the new missiles. A slower phase-in that extends to 2018 now looks most likely.

The other element was to be a land-based “Aegis Ashore” site at Deveselu Air Base, Romania, hosting SM-3 missiles instead of Boeing’s longer-range, fixed-location GMD system. Aegis Ashore designs appear to have shifted from an easily-deployable configuration, toward high-investment fixed sites that are similar to the GMD program they replaced. The Romanian deployment would use SM-3 Block 1B missiles from an emplaced Mk.41 VLS launcher, and be controlled by a SPY-1D radar and AEGIS BMD 5.0.1 combat system. An interim setup was formally commissioned in October 2014.

If successfully deployed, this is a defense against short and medium range missiles (SRBMs & MRBMs), with some capability against intermediate range missiles in the 1,850-3,500 mile class (IRBMs). On the other hand, the location of these defenses still leaves central Europe mostly unprotected.

During Phase 2, NATO’s Active Layered Theatre Ballistic Missile Defence (ALTBMD) command and control network will be operational at an initial level. France, Italy, and possibly Poland will have armed land-based BMD systems of their own deployed, and it’s likely that ALTBMD compatible BMD-capable ships will be fielded. The Netherlands is already preparing its vessels for missile tracking and SM-3 hosting, and the Aster-30/ PAAMS combination is fielded on British, French, and Italian ships.

EPAA Phase 3, 2018- SM-3: EPAA phases
(click to view full)

Around 2018, America expects to deploy the longer-range, 21″ diameter SM-3 Block II missile, on ships and (if deployments have been accepted) on shore. The US MDA would add Redzikowo, Poland to its list of land-based sites, defending Northern Europe with SM-3 Block 1B & Block IIA missiles, controlled by an AEGIS BMD 5.1 combat system.

This system would be intended to kill SRBM, MRBM, and IRBM threats, with some capabilities against full intercontinental range missiles (ICBMs). Gen. Cartwright has stated that just 3 SM-3 Block II locations would be able to cover all of Europe, but that missile is an earlier-stage R&D effort, with all the expected implications for dates and certainty of capabilities.

EPAA Phase 4, 2020+

Effectively cancelled.

The USA was going deploy a new Next-Generation Aegis Missile (SM-3 Block IIB) design, to improve performance and begin to field a credible anti-ICBM capability. Technical issues became a serious problem, once experts concluded that the initial sites picked for EPAA aren’t all that helpful for defending the USA. A liquid-fuel booster could be used to boost interceptor speeds, but that isn’t safe to use on ships. Even though the best place to defend the USA against an ICBM launched from Iran is from the middle of the North Sea. Now throw in a planned development schedule defined by a wild-guess political promise, rather than solid information. The whole thing was a mess, and in March 2013, it was “restructured” into into an R&D program by the Pentagon.

Aegis Ashore AN/TPY-2
(click to view full)

Making these things happen requires a number of additional steps. AN/TPY-2 radars will provide initial services during Phase 1, and will continue to play a supplemental role thereafter in both EPAA and NATO’s ALTBMD.

Beyond Phase 1, the USA has shifted to a larger and more permanent basing structure, which removes some of the benefits of switching away from GMD. The US Missile Defense Agency is building an “Aegis Ashore” test complex near Moorestown, NJ, and another at its missile defense testing center at Barking Sands, Kauai, Hawaii. The Hawaiian complex is hosting a land-based Mark 41 launcher, a 4-story building with a SPY-1 radar, and three 125-foot tall test towers.

Poland is being considered for Aegis Ashore deployment in 2018, but the country is beginning to diversify its options. The September 2011 agreement with the USA is still in force, but Poland is determined to have its own missile defense infrastructure, and may choose to place their bets on a parallel NATO/ European system. Their other option would likely involve American PATRIOT and/or THAAD systems.

Beyond Europe

Aegis Ashore may spread beyond Europe. In the Pacific, Japan is already deploying SM-3s at sea, and may find land-based counterparts useful. Its neighbor South Korea shares Japan’s worries about North Korea’s evil and semi-stable regime; the ROK intends to load shorter range SM-6 missiles on its AEGIS destroyers, is buying and deploying Patriot PAC-2 GEM+ missiles, and has contracted with Israel for “Green Pine” air and missile defense radars. Its cruiser-size KDX-III AEGIS destroyers could be modified for a ballistic missile defense role, but land-based SM-3s linked to air and naval systems offer an option that doesn’t require naval upgrades.

The other country that has been linked to land-based SM-3s had a more complicated set of choices, and possible rationales. See Appendix A’s coverage of Israeli deliberations, which ended with a decision to deploy their own Arrow technology instead.

The Missiles SM-3 seeker: target!
(click to view full)

With a maximum range of about 300 miles/ 500 km, the Standard Missile 3 Block I (SM-3) has just 1/5th to 1/6th the reported reach of GMD’s Ground Based Interceptors, but a longer reach than current mobile land options like THAAD. SM-3 has 4 stages. The booster motor and initial stage launch the missile, and take it out of the atmosphere. Once it goes “exo-atmospheric,” the 3rd stage is used to boost the missile higher, and also corrects its course by referencing GPS/ INS locations. The final stage is the LEAP kill vehicle, which uses infrared sensors to pick out the target, then guides itself in to ram it. That target is expected to be an enemy ballistic missile, but America’s shoot-down of its own ailing satellite in 2008 showed that the same technology can be used against any low earth orbit object.

The introduction of Raytheon’s SM-3 Block II variant will widen the missile’s diameter from 13.5″ to 21″, greatly extending its range and speed. That means better performance against longer range missiles that move faster, and offer different trajectories. Block II weapons will add the ability to handle longer-range, higher-flying IRBM (Intermediate Range Ballistic Missiles, usually 3,000-5,000 km range), and even offer some hope against global-strike threats like ICBM (Inter Continental Ballistic Missile) warheads. SM-3 Block IIA is currently expected to debut around 2015, but testing and other requirements mean it won’t be part of EPAA until 2018 or later.

Contracts & Key Events Europe scenario

Because of the intertwined nature of the EPAA system, many contracts will be covered elsewhere. The AN/TPY-2 radar has its own article, as does the THAAD theater air defense system the TPY-2s were originally developed for. Standard Missile family contracts also have their own FOCUS article, as does the ubiquitous Mk.41 vertical launching system that will be part of the Aegis Ashore complex.

Unless a contract of these types specifically notes dedicated assets for EPAA/Aegis Ashore, or is directly germane to key program technologies, they will not be covered here.

FY 2015

NSF Devesulu opens.

Oct 10/14: Romania. NATO formally inaugurates Naval Support Facility Devesulu, the new Aegis Ashore facility in Romania. Capt. William Garren becomes the site’s 1st commander, and construction continues on site. It’s scheduled to become fully operational in 2015. Stars and Stripes, “Navy to commission missile defense base in Romania” | Romnaia TV, “Vin americanii! SUA preia vineri baza de la Deveselu” [picture is wrong] | Iran’s PressTV, “US will commission missile base in Europe amid tensions with Russia” | Russia Today, “US commissions ‘crucial’ NATO missile shield facility in Romania”.

NSF Devesulu, RO opens

FY 2014

GAO & CRS reports cite software issues, spectrum frequency conflict in Poland, question operating cost estimates and cost-sharing; Initial Turkish deployment was very ragged; 1st launch from AA facility; DDGs deploying; SM-3 Block IIA passes CDR. NATO BMD concept
click for video

June 2/14: DDG Deployment. USS Ross [DDG-71, uses BMD 3.6.1] steams out of Norfolk to its new base in Rota, Spain, where it will join USS Donald Cook [DDG-71, uses BMD 4.0.2] as part of EPAA efforts. Sources: WVEC Norfolk, “Photos: 2nd Navy destroyer leaves Norfolk for Spain”.

May 22/14: SAMP/T. France and Italy carry out a test of their own at the French DGA’s Biscarosse test range, with SAMP/T Mamba systems from each country firing an Aster-30 missile and destroying a target drone. The larger story is the successful interconnection of their systems, within a broader test campaign that also involved French air force Crotale SHORADS batteries, French Army man-portable Mistral VSHORADS, and a French E-3F AWACS plane, all connected to the French 3D Defense Management Center (CMD3D) and control centers at Lyon and at Mont de Marsan.

France is building a national air defense and anti-missile system, which needs to inter-operate with NATO. Italy is another natural partner for missile defense, as they’re also using Aster-30 missiles on land in SAMP/T Mamba systems, and using them at sea in Franco-Italian Horizon Project frigates. Sources: French DGA, “Vidéo : reussite d’un double tir SAMP/T franco-italien” | defense-aerospace, “Surface-to-Air Campaign at Biscarosse: “Barrois” Squadron from Saint Dizier Fires First Mamba, Demos Interoperability”.

May 20/14: AA CTV-01. The 1st SM-3 launch from an Aegis Ashore facility takes place at the Pacific Missile Range Facility test site in Kauai, Hawaii. It’s a live SM-3 Block IB launch, but not a live intercept, since they’re only using a simulated target. The main goal is ensuring that all systems work when they’re transferred to land. Sources: US MDA, “Standard Missile Completes First Test Launch from Aegis Ashore Test Site” | Lockheed Martin, “Aegis Ashore Achieves Major Test Milestone for Worldwide Ballistic Missile Defense System” | Raytheon, “Aegis Ashore Launches Standard Missile-3 for First Time”.

1st Aegis Ashore launch

April 11/14: GAO Report. The Pentagon has been reluctant to develop a life-cycle cost estimate for BMD in Europe, on the dubious grounds that it isn’t a separate program. that’s why GAO-14-314 concerns itself with EPAA’s costs and implementation issues.

PATRIOT and AN/TPY-2 deployments have already shown weaknesses. The Turkish PATRIOT batteries faced roadblocks involving deployment when they arrived in December 2011. Other issues included training to different NATO engagement procedures, information-sharing uncertainties, soldiers deployed to cold mountaintops in tents that couldn’t handle the conditions, and poor local roads that could be dangerous. Build-out of longer-term infrastructure won’t even begin until mid-2014. The TPY-2 radar deployments to Turkey (2011) and CENTCOM (2013), meanwhile, still can’t share information and work together, because that hasn’t been worked out.

For Aegis Ashore, previous reports (q.v. April 26/13) have mentioned the AN/SPY-1D radar’s conflicts with local civil frequency usage. That’s largely worked out now in Romania, but not in Poland. Indeed, the Poles are about to issue commercial licenses for key radar frequencies, which would complicate things even more. It doesn’t get easier to handle all of this when US Strategic Command, European Command, MDA, and the Navy all claim roles in each deployment.

On the cost side, the US Navy will take over maintenance and operation of both European Aegis Ashore sites in 2018, but they haven’t developed a joint 25-year O&M estimate. There are also gaps concerning other BMD elements. The Army is estimating $61 million to support the Turkish TPY-2 radar, and $1.2 billion over 20 years. This assumes contractor support throughout, but different arrangements might be better and cheaper. A full analysis is expected in FY 2015. THAAD batteries have an estimated O&M cost of $6.5 billion over 20 years, but that $325 million per year involves basing in the USA. Costs for basing in Europe are expected to be higher. How much higher? We don’t know, because the US MDA and US Army can’t agree on how to do the analysis.

April 9/14: Speed up? Vice Adm. James Syring of the US Missile Defense Agency responds to speculation by saying that they could speed up the deployment of Poland’s Aegis Ashore installation in response to Russia’s invasion of Crimea, but:

“We’d need some additional funds in the budget, and we’d need to move up the development of the [SM-3 Block] IIA,”

The first part of the statement is true. Given the likely cost of the SM-3 Block 1B missiles, and known costs for the facility, it will take somewhere between $400 – 500 million to fully pay for an operational site. The second part of Syring’s statement, however, is wishful thinking. Unless development is being slow-walked and funds are the primary bottleneck, extra funds have a very limited effect in moving up a project’s development. The SM-3 Block IIA isn’t the type of project that will get much benefit. Sources: Defense News, “US May Accelerate Deployment of Missile Defense System in Poland”.

April 8/14: CRS Report. The Congressional Research Service updates their backgrounder covering the Aegis Ballistic Missile Defense system, which includes the EPAA. They confirm DID’s charts regarding these areas, though CRS doesn’t divide general naval BMD from the land-based European implementation.

They do have some pointed questions for Europe, however, proposing a calculation of relative American vs. European total contributions to European missile defense, and asking “Why should European countries not pay a greater share of the cost of the EPAA, since the primary purpose of the EPAA is to defend Europe against theater-range missiles?” That’s a different attitude.

Meanwhile, the FY 2015 budget cuts 132 SM-3 missiles from the FY 2014 budget’s 2015-2018 buys, and it will also change the composition and makeup of the naval BMD fleet via slower upgrades, and the mothballing of 4 BMD cruisers. Congress will want to know what effect that will have on overall capabilities, but asking the military will be pointless.

April 1/14: GAO Report. GAO-14-351 focuses on acquisition goals and reporting for missile defense in general. Most of the key findings for EPAA have already been covered recently, but the program is concerned about flight test delays and cancelations affecting Aegis Ashore, while adding that a 17 month delay in the modernized Aegis system is at a problematic point:

“Discovery of software defects continues to outpace the program’s ability to fix them; fixes may have to be implemented after software is delivered.”

March 25/14: AA Poland. Lockheed Martin Mission Systems and Training, Moorestown, NJ receives a $93 million contract, exercising options for the core radar and equipment in Poland’s Aegis Ashore Missile Defense System (AAMDS), and providing multi-year procurement funding for Aegis Weapon System (AWS) MK 7 equipment sets.

All funds are committed immediately, using FY 2014 budgets and FY 2013 shipbuilding budgets. Work will be performed in Moorestown, NJ (85.5%), Clearwater, FL (13.1%), and Akron, OH (1.4%), and is expected to be complete by September 2021. US NAVSEA in Washington, DC manages the contract (N00024-14-C-5114).

March 21/14: AA Poland. Raytheon IDS in Sudbury, MA receives a $45 million modification for 1 AN/SPY-1D(V) Transmitter Group and select Missile Fire Control System MK 99 equipment, which will become part of the Aegis Ashore Missile Defense System in Poland.

Work will be performed in Andover, MA (78.3%); Sudbury, MA (19.3%); Canada (1%); Moorestown, NJ (0.9%); and Norfolk, VA (0.5%), and is expected to be completed by March 2016. All funds are committed immediately, using FY14 funds. US NAVSEA in Washington, DC manages the contract (N00024-13-C-5115).

March 14/14: GAO report. The GAO releases GAO-14-248R, regarding the USA’s EPAA plans for defending Europe from ballistic missiles. The bottom line? There are a lot of moving parts, they’re being developed in parallel, and some of them aren’t moving as fast as others. Which means the system as a whole is going to be a bit behind. The MDA isn’t interested in acknowledging that, but the GAO makes a strong case by citing all the promised capabilities that are being removed from the beginning of each phase.

Phase 1, 2011. A TPY-2 radar is deployed in Turkey, but C2BMC systems still haven’t tested scenarios where they’re managing more than 1 TPY-2 radar, and GAO says that “Key capabilities for Phase 1 will not be fully available until 2015.”

Phase 2, 2015. The biggest issue is C2BMC S8.2 software, which has been delayed until 2017. It was supposed to improve the integration of incoming missile tracks for Phase 2, and provide a Lock-On After Launch firing capability for AEGIS BMD systems. Without it, radars like the TPY-2 will perform below their planned potential, and so will the missiles. Especially since the Romanian site’s Aegis Ashore system will only be an interim version, which will also wait until 2017 before it has all of the initially promised capabilities. On the mobile front, THAAD’s ability to distinguish incoming warheads in debris fields won’t reach desired capability until 2017, either.

Phase 3, 2018. The 2-year delay of full Phase 2 Aegis Ashore capability leads one to wonder if AEGIS BMD 5.1 will really be ready for 2018 deployment. The same might be said of the SM-3 Block 2A missile, even though MDA says it’s on track. Meanwhile, C2BMC is the biggest issue again. S8.4 is meant to let AEGIS BMD systems intercept incoming missiles without using their own radars, thanks to faster integrated tracks, more precise tracking, and resilience in more “complex” conditions. It won’t arrive until 2020 or later, forcing the MDA to deploy an S8.2.x build instead. That lateness will affect THAAD as well as Aegis Ashore, and THAAD’s own upgrades will happen in a timeframe that means any issues found in testing will delay them until after Phase 3 has begun.

Dec 27/13: Aegis multiyear. Lockheed Martin Mission Systems and Training in Moorestown, NJ receives a multi-year $574.5 million firm-fixed-price contract for Aegis MK 7 equipment sets. All confirmed orders will be used in destroyer production and refits (DDG 117 – 123), but there’s 1 option that can be used for Poland’s Aegis Ashore complex, along with associated engineering services. Lockheed Martin confirms that the core of all sets will be Aegis Baseline 9, which includes missile defense features.

$308.4 million in FY 2013 shipbuilding funds is committed immediately, to enable advance buys in bulk. Work will be performed in Moorestown, NJ (85.5%); Clearwater, FL (13.1%); and Akron, OH (1.4%), and is expected to be complete by September 2021. As one would expect, this is a sole source contract under 10 U.SC 2304(c)(1). US NAVSEA in Washington Navy Yard, Washington, DC manages the contract (N00024-14-C-5114). See also Lockheed Martin, Jan 7/14 release.

Oct 31/13: SM-3-IIA. Raytheon and Mitsubishi Heavy Industries have completed the SM-3 Block IIA’s Critical Design Review (CDR), and the USA and Japan have agreed on workshare arrangements that allocate development responsibility between each country. SM-3-IIA is the key new piece in EPAA Phase 3, and the successful CDR keeps it on track for flight test in 2015.

Raytheon made the announcement at the 2013 AIAA Multinational Ballistic Missile Defense Conference in Warsaw, Poland. Sources: Raytheon, “New, Larger Standard Missile-3 Moves From Design to Testing” | Raytheon, Oct 31/13 release.

Oct 28/13: AA Romania. American, Romanian and NATO officials break ground on the Aegis Ashore facility at Devsulu AB, based on the September 2011 accord between the United States and Romania.

Romania’s SC Glacial PROD SRL has already done $3.3 million in site-activation work, including temporary offices, container housing units, a warehouse, and a vehicle inspection area. US Navy, “US, Romania begin work on Aegis Ashore missile defense complex”.

FY 2013

SM-3 Block IIB canceled; European multi-system test; GAO Report; MBDA’s Aster-30 SAMP/T and USA’s GBI advance in parallel. 2013 BMD conference
click for video

July 18/13: AA Romania. KBR announces a $134 million Aegis Ashore build-out contract from the U.S. Army Corps of Engineers’ Europe District. The 269-acre site on Romania’s Deveselu Air Base will include a 4-story radar deckhouse structure relocated from New Jersey, security fencing, plus facilities and infrastructure including roads, support buildings, communications, security and utilities.

April 26/13: GAO Report. The GAO looks at the Missile Defense Agency’s full array of programs in report #GAO-13-342, “Missile Defense: Opportunity To Refocus On Strengthening Acquisition Management.” With respect to EPAA/ Aegis Ashore, the report reiterates concerns from the GAO’s March 30/12 and April 20/12 reports (q.v.): unstable cost baselines, concurrent testing & development, and questions about the ability to use the SPY-1’s radar frequencies without creating spectrum interference problems for the host nations.

The program office sees its greatest risks as (1) integration testing in Hawaii and New Jersey, (2) potential shipping or transportation delays, and (3) construction delays for the operational and test facilities. The disconnect stems from a fundamental disagreement about the project’s level of risk. With the program citing similarity to sea-based Aegis BMD as a reason for low risk. If the GAO’s concerns re: spectrum issues come true, however, the similarity will drop quickly. An analysis for Romania is due in 2013, but Poland will present its own independent situation. Meanwhile, knowledge gained from flight tests that begin in 2014 can’t be used to guide construction. Under a new plan, even Poland’s 2018 site will be ordering advance construction components in January 2014.

The GAO estimates the cost to develop and build the Polish facility at $746 million, from R&D to operational status. As such, the MDA reported costs of all 3 Aegis Ashore facilities is $2.3 billion. The GAO wonders about the US MDA’s portfolio balance, given R&D needs for multiple missiles, plus full build out of Aegis Ashore and full production of the SM-3 Block IB, plus operation, support, and testing for the iffy GMD system. The GAO recommends Analysis of Alternatives studies as one way to help manage that portfolio.

April 18/13: Poland. US State Department official Frank Rose (Deputy Assistant Secretary, Bureau of Arms Control, Verification and Compliance) speaks to the Polish National Defense University in Warsaw about Aegis Ashore. Poland is looking to build a national missile defense architecture, so Rose stresses the important of interoperability with NATO’s Active Layered Theater Ballistic Missile Defense (ALTBMD) command-and-control system (q.v. May 21/12). He adds that:

“The Ballistic Missile Defense Agreement between the U.S. and Poland entered into force in September of 2011. This agreement places a land-based interceptor site, similar to Phase 2, in Redzikowo, and includes the SM-3 Block IIA interceptor. This EPAA Phase 3 site is on schedule and on budget for deployment in the 2018 timeframe. The interceptor site here in Poland will be key to the EPAA. Not only will it protect Poland itself, but when combined with the rest of the EPAA assets, Phase 3 will be able to protect all of NATO Europe against ballistic missile threats from the Middle East.”

March 15/13: Following North Korea’s 3rd nuclear test attempt, the new US Secretary of Defense announces that the USA will add 14 more ground-based interceptors at Fort Greely, AK and Vandenberg AFB, CA, boosting the total number from 30 back to the 44 planned by the previous administration. At the same time, they’re re conducting Environmental Impact Studies for a potential additional GBI site in the United States.

They’re paying for this by “restructuring” the SM-3 Block 2B Next Generation Aegis Missile program, whose 2020 deployment date was never realistic (vid. April 20/12 GAO report). It’s effectively canceled.

Japan will continue to collaborate with the USA on the SM-3 Block 2A program, and they’ll get a 2nd AN/TPY-2 radar on their territory. Pentagon AFPS | Full Speech Transcript | Boeing | CS Monitor re: Russian angle.

No EPAA Phase 4

March 6/13: SAMP/T. MBDA’s SAMP/T system is operated by a joint French & Italian crew, and successfully intercepts a 300 km (short range) tactical ballistic missile target. Eurosam describes it as:

“…the first SAMP/T firing test in a NATO environment, close to what would be an operational use… [within] the alliance ALTBMD programme…. DGA sensors did provide the firing units and the command levels long-range detection data on A L16 radio network. DGA MI, in Bruz, acted as a L16 [Link-16] national C2, interfacing in L16 both with NATO BMDOC [in Ramstein, Germany], via L16 JREAP and with SAMP/T.”

The SAMP/T system is now widely deployed in France & Italy, with 15 land-based units equipped, alongside naval use of its Aster-30 missile from the countries’ Horizon Class frigates. We won’t be covering it here beyond this initial milestone, but it will be part of NATO’s missile defenses going forward. France’s DGA [in French] | Eurosam.

Feb 11/13: GAO Report. GAO-13-382R: “Standard Missile-3 Block IIB Analysis of Alternatives” throws cold water on the idea that the SM-3 Block 2B can defend the USA from bases in Poland or Romania. The geometry isn’t very good, and success may require a boost-phase intercept. Those are very tricky, and have limited range, because you have to hit the enemy missile within a very short time/ distance.

Some members of the military think it’s possible, at an initial estimated budget of $130 million extra. The problem is the tradeoffs. Liquid propellants can boost speed, but are unsafe on Navy ships due to the fire risks. On the other hand, the middle of the North Sea offers much better missile intercept geometries. Maybe Block 2B shouldn’t be land-based at all, but then why replace Block 2A in such an expensive way? MDA still needs to set the future missile’s performance requirements and limits. Where should the tradeoffs be made?

This brings us to the GAO’s point about the MDA developing the SM-3 Block IIB under a framework that dispenses with a good chunk of the usual paperwork, including an Analysis of Alternatives. On reflection, this is more than a bureaucratic point driven by “records show that programs doing the paperwork usually fare better.” One of the EPAA’s key underlying assumptions is now in question, and the proposed solution must now be in question as well. Is the best solution for land-based European missile defense still SM-3 Block IIB? What are the tradeoffs vs. using a system like the NRC’s recommended GMD-I from the USA (vid. September 2012 entry), and making Block 2B a ship-deployed missile? Does Block 2B even make sense now? Without good answers regarding capability, options, and maintainability, how does the MDA decide – or pick the right winning combination among the Block 2B competitors? A full AoA could improve those answers, and hence the odds of a smart pick.

Dec 21/12: Radar components. Raytheon IDS in Sudbury, MA receives $19.7 million for firm-fixed-price delivery order for radar components: Stabile Master Oscillator ordnance alteration kits, Radio Frequency Coherent Combiner ordnance alteration kits and associated spares, and material and installation services in support of the modernization effort on Navy ships and Aegis ashore units. This contract includes options which could bring the contract’s cumulative value to $22.9 million.

Work will be conducted in Norfolk, VA (63%); Andover, MA (27%); and Burlington, MA (10%), and is expected to be complete by June 2015. $19.7 million will be obligated at time of award. The Naval Sea Systems Command, Washington, D.C., is the contracting activity (N00024-11-G-5116, #0020).

Dec 21/12: AA Romania. Lockheed Martin Mission Systems and Sensors in Moorestown, NJ receives a $57.3 million contract modification for an Aegis Weapon System in support of DDG 116 and the purchase of material assemblies to support Aegis Ashore Missile Defense System Host Nation #1, Romania.

Work will be performed in Moorestown, NJ (85%), Clearwater, FL (14%), and Akron, OH (1%), and is expected to be complete by January 2017. All contract funds in the amount of $57,336,086 are committed immediately. The Naval Sea Systems Command, Washington DC manages the contract (N00024-09-C-5110).

Dec 20/12: Trainer SDD. Lockheed Martin Mission Systems and Sensors (MS2), Moorestown, NJ receives a $20.7 million cost-plus-fixed-fee, firm-fixed-price contract for the Aegis Ashore Team Trainer. This trainer will be designed to meet the Aegis Ashore Missile Defense System (AAMDS) individual watch station and watch team training, qualification and certification requirements. This contract will also fund information assurance requirements for the trainer, an information assurance training course, an instructor operator training course, and travel associated with the trainer’s development.

$4.7 million are committed immediately. Work will be performed in Moorestown, NJ and is expected to be complete in October 2014. This contract was not competitively procured, pursuant to FAR 6.302-1 by the US Naval Air Warfare Center Training Systems Division in Orlando, FL (N61340-13-C-0007).

Dec 10/12: AA Romania. Lockheed Martin Mission Systems and Sensors (MS2) in Moorestown, NJ receives a $45.9 million a contract modification for Aegis Ashore Engineering Agent engineering support and skid integration for “host nation” (which would be Romania) though “this is not a Foreign Military Sales [FMS] acquisition.” If the US military is buying it, it isn’t an FMS, even if they’re preparing to base it at a foreign location. This award raises the total contract’s value to date from $209.9 million to $255.8 million.

Work will be performed in Moorestown, NJ through Dec 31/15, and $7.8 million FY 2013 Research, Development, Test and Evaluation funds will get things going. The US Missile Defense Agency in Dahlgren, VA manages this contract (HQ0276-10-C-0003, PO 0044).

Nov 5/12: Networking. Boeing in Huntington Beach, CA receives a $16.7 million firm-fixed-price and time-and-material contract for gigabit ethernet data multiplex systems. They’ll be used in the DDG modernization program, new ship construction, and Aegis Ashore Systems. This contract includes options which could bring its cumulative value to $30 million.

Work will be performed in Camarillo, CA (57%), Smithfield, PA (33%), and Huntington Beach, CA (10%), and is expected to be complete by May 2015. $475,975 will expire by the end of the current fiscal year, on Sept 30/12. This contract was procured on a limited competition basis via the and Navy Electronic Commerce Online websites, with 2 proposals solicited and 2 offers received. The Naval Surface Warfare Center Dahlgren Division, Dahlgren, VA manages this contract (N00178-13-C-2000).

Oct 2/12: C2 Integration. ALTBMD. NATO’s NCI announces that “Ensemble Test 2″ has been successful, using NATO’s Combined Federated Battle Lab Network (CFBLNet) as a test bench. Participants included 12 laboratories from 5 Nations across 2 continents, and the systems included:

  • An Italian AN/TPS-77 transportable long range radar, built by Lockheed Martin
  • French and Italian land-based SAMP/T systems, using MBDA’s Aster-30 missile
  • Italy’s Horizon Class high-end air defense frigate, which uses the PAAMS combat system and Aster-30 missile
  • US, Dutch and German PATRIOT missile defence systems
  • A Dutch ADCF (De Zeven Provincien Class) high-end air defense frigate
  • A German SAM Operations Centre from Germany,
  • An American Aegis Ballistic Missile Defence System
  • The USA’s C2BMC (Command and Control, Battle Management, and Communications) system
  • The AN/TPY-2 radar that accompanies THAASD, and is part of EPAA
  • The USA’s huge Shared Early Warning System (SEW) radars
  • NATO’s Air Command and Control System (ACCS), the Air Command and Control Information Services (AirC2IS), CRC System Interface (CSI), and Interim Command and Control (ICC) system.

Firing missiles is the easy part. Having different command and control systems work together, which is required for any sort of coordinated defense, is difficult. Ensemble Test 3 is scheduled for May-June 2013. NATO NCIA.

FY 2012

NATO declares interim defensive capability; EPAA won’t really defend USA; SM-3 Block IIs may not meet EPAA schedule; Costs keep rising; Poland independent, but not out. Operational
click for video

Sept 25/12: AA Romania. Raytheon Integrated Defense Systems in Sudbury, MA a $43.6 million contract modification “for the production and integration of an Aegis Weapon System (AWS) and Missile Fire Control System in support of DDG 116, and an AWS in support of Aegis Ashore Missile Defense System Host Nation #1″ (HN-1, i.e. Romania). Raytheon makes the AN/SPY-1 radar transmitters and MK99 FCS illuminators.

Work will be performed in Andover, MA (80%), Sudbury, MA (15%), and Portsmouth, RI (5%), and is expected to be complete by September 2017. US Naval Sea Systems Command in Washington DC manages the contract (N00024-09-C-5111).

Sept 14/12: AA Romania. Lockheed Martin Mission Systems & Sensors in Moorestown, NJ receives an $18.5 million contract modification for the production and integration of an Aegis weapon system in support of DDG 116, and the purchase of material assemblies to support Aegis ashore missile defense system Host Nation 1 (Romania).

Work will be performed in Moorestown, NJ (85%); Clearwater, FL (14%); and Akron, OH (1%); and is expected to complete by January 2017. US Naval Sea Systems Command in Washington DC manages the contract (N00024-09-C-5110).

September 2012: NRC report. The US National Research Council publishes “Making Sense of Ballistic Missile Defense: An Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives.” The report staff have deeply impressive backgrounds related to missile defense, and their main conclusion is that very fundamental reasons of geography and physics make boost-phase defense systems a waste of time.

This includes AEGIS BMD systems. The report explains very clearly that the window for stopping a warhead before it has enough energy to hit “defended” areas makes it difficult to impossible to position a ship in a place that allows even future SM-3 Block II missiles to hit their target.

It also states that EPAA Phase IV is not likely to be an effective way to defend the United States, and recommends that the USA make changes to its own GMD system and radar set. They’re not advocating the dismantling of EPAA, just saying that the USA should have a system in which EPAA is about Europe’s defense, and the USA has a system that doesn’t depend on it.

Aug 30/12: AA Kauai. Lockheed Martin Mission Systems and Sensors in Moorestown, NJ gets an $8.3 million contract ceiling increase, to provide Aegis Ashore Engineering Agent (AAEA) long-lead-time materials for the complex being built at the Pacific Missile Range Facility (PMRF) in Hawaii. This brings the total contract value from $200.1 to $209.3 million.

Work will be performed in Moorestown, NJ through April 30/13, and $5 million in FY 2012 Research, Development, Test and Evaluation funds will be used as initial funding. The US Missile Defense Agency (MDA) in Dahlgren, VA manages the contract (HQ0276-10-C-0003, PO 0038).

Aug 10/12: CRS Report. The US Congressional Research Service issues its latest update of “Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress” [PDF]. Key issues highlighted or examined by Mr. O’Rourke include the cost of forward-deploying 4 destroyers to Spain, the FY 2013 budget’s proposal to slow the 2013-2020 ramp-up rate for BMD ships, the potential for European contributions to naval BMD, the inability to simulate China’s DF-21 ship-killing ballistic missile, SM-3 Block IIB risks, and concurrency and technical risk in the AEGIS BMD program generally.

With respect to the Spanish deployment (vid. Feb 16/12 entry), Rota can accommodate all of the new personnel, but infrastructure upgrades will be required. In total, the Navy estimated that it would incur approximately $166 million in up-front military construction, personnel, and maintenance costs; a small annual increase in operations and maintenance; and personnel costs of approximately $179 million – though really, you have to pay them wherever they are.

Aug 6/12: Poland fixing its “mistake”. Polish President Bronislaw Komorowski states that Poland is prepared to create its own anti-aircraft and missile defense system as part of a NATO shield, at a cost of $3-6 billion. With respect to the USA’s defensive plan, which Poland hasn’t rejected yet:

“Our mistake was that by accepting the American offer of a shield we failed to take into account the political risk associated with a change of president. We paid a high political price. We do not want to make the same mistake again.”

The missile and air defense system proposed by the Polish president would target all short and some medium range missiles, just like the initial 2 stages of the EPAA. The system would be part of NATO’s broader air defense systems, as well as the emerging NATO ALTBMD Missile Defense shield. Germany and France are specifically mentioned as potential partners, and MBDA’s naval PAAMS system and Aster-30 missiles have already been converted to a land equivalent of their own. Their SAMP/T is the logical competitor if Poland wants to buy a non-American system. Its weakness is that it wouldn’t be able to grow into a counter against IRBM or ICBM missiles, but that could make it a very good complement to an American system that did. Relations with Israel are close, but David’s Sling is a joint development with Raytheon, and past American behavior has been to use its weapon export rules against potential competitors. Read “Alone, If Necessary: The Shield of Poland” for full coverage of Poland’s WISLA and NAREW air defense competitions.

June 27/12: FTM-18 test. USS Lake Erie [CG-70] with its AEGIS BMD 4.0.1 system successfully launches an SM-3 block IB missile to hit a separating ballistic missile target. This is the same configuration that will be used for the land-based Phase 2 of the USA’s European missile defense plan, and represents an important success for the SM-3 block IB after the FTM-16 failure. This firing makes the AEGIS & SM-3 combination 23/28 in intercept tests so far (82.1%), vs. 31/40 (77.5%) for all other missile defense system intercept tests. US MDA | Lockheed Martin | Raytheon.

June 7/12: AA Romania. Lockheed Martin Mission Systems and Sensors (MS2) in Moorestown, NJ gets a contract ceiling increase of $9.8 million, increasing the total contract value to $197.4 million from $187.6 million. Under this modification, they’ll provide Aegis Ashore Engineering Agent Phase 2B support for the Host Nation 1 (Romania) skids and skids accessories.

Work will be performed in Moorestown, NJ, and Akron, OH through Oct 31/13. $6.9 million in FY 2012 Research, Development, Test and Evaluation funds will be used as incremental funding. The US Missile Defense Agency in Dahlgren, VA manages this contract (HQ0276-10-C-0003, PO 0032).

June 4/12: Aegis Ashore. URS Group, Inc. in San Antonio, TX wins a $129.5 million firm-fixed-price task order to build the Aegis Ashore test complexes in Moorestown, NJ and the Pacific Missile Range Facility at Barking Sands, Kauai, HI.

In Moorestown, they’ll build a radar deckhouse and support building, and do related work to test the government-furnished, government-installed MK41 missile launchers. The Pacific Missile Range facility involves full site construction of a radar deckhouse, support building, launch pad, electrical power, potable water, sewer connection, synthetic natural gas system, and communications systems, in addition to testing their success in integrating government-furnished, government-installed MK41 missile launchers. The task order also contains 1 unexercised option, which, if exercised, would increase cumulative task order value to $130 million.

Work will be performed in Kauai, HI (72%), and Moorestown, NJ (28%), and is expected to be complete by November 2013. Three proposals were received for this task order by the Naval Facilities Engineering Command in Pearl Harbor, Hawaii (N62742-09-D-1174, HC02). See also Aug 24/10 entry.

May 21/12: NATO ALTBMD. NATO leaders declared that the Alliance now has an interim ballistic missile defence capability, via a basic ALTBMD command and control system capability which has been tested and installed at Headquarters Allied Air Command in Ramstein, Germany.

At present, ALTBMD is just a C2 network. NATO members need to provide sensors and interceptors to connect to the system. Full Operational Capability isn’t expected until the end of the current decade, or the early 2020s. NATO.

ALTBMD interim capability

April 20/12: GAO report. The US GAO releases report #GAO-12-486, “Opportunity Exists to Strengthen Acquisitions by Reducing Concurrency.” The implications for missile defense belie the bland title:

“To meet the presidential 2002 direction to initially rapidly field and update missile defense capabilities as well as the 2009 announcement to deploy missile defenses in Europe, MDA has undertaken and continues to undertake highly concurrent acquisitions. Concurrency is broadly defined as the overlap between technology development and product development or between product development and production. While some concurrency is understandable, committing to product development before requirements are understood and technologies mature or committing to production and fielding before development is complete is a high-risk strategy that often results in performance shortfalls, unexpected cost increases, schedule delays, and test problems. It can also create pressure to keep producing to avoid work stoppages… During 2011, the Ground-based Midcourse Defense, the Aegis Standard Missile 3 Block IB, and the Terminal High Altitude Area Defense experienced significant ill effects from concurrency.

…Aegis Ashore began product development and set the acquisition baseline before completing the [Preliminary Design Review]. This sequencing increased technical risks and the possibility of cost growth… The program has initiated procurement of components for the installation and plans to start fabricating two enclosures called deckhouses – one for operational use at the Romanian Aegis Ashore installation and one for testing at the Pacific Missile Range Facility – in fiscal year 2012, but does not plan to conduct the first intercept test… until fiscal year 2014. Further, the program plans to build the operational deckhouse first, meaning any design modification identified through system testing… will need to be made on an existing deckhouse and equipment. As we have previously reported, such modifications on an existing fabrication may be costly.”

March 30/12: GAO Report. The US GAO tables its “Assessments of Selected Weapon Programs” for 2012. For Aegis Ashore, RDT&E costs have increased from $835.1 million in April 2010 to $1,418.6 million as of October 2011. The reconstitutable deckhouse design for the sites had not been included in its baseline, and the addition of hardware for a 3rd site in Poland also had to be paid for.

GAO sees concurrency risks from the program’s decision to begin system development before the preliminary design review, and from its plan to buy operational components before testing is done. the Navy defends their practice by saying that all of these systems are in advanced testing or deployed on Navy ships already. The program’s last milestone was a Critical Design Review in December 2011, and flight tests aren’t expected to begin before Q2 2014. The 1st “deckhouse” with radar, missiles, etc, is expected to be ready in December 2015, and the 2nd by December 2018. GAO:

“The SPY-1 radar requires modifications for its use on land and other changes may be necessary due to host nation radar frequency issues… In addition, the maturity of SM-3 Block IB may be overstated because some of its component technologies have not been flight tested or have experienced failures in testing. The multimission signal processor also faces development challenges, and the Defense Contract Management Agency has identified its schedule as high risk. We have previously reported that a significant percentage of its software still needs to be integrated.”

March 30/12: SAR. The Pentagon’s Selected Acquisitions Report ending Dec 31/11 includes elements of EPAA:

“Ballistic Missile Defense System (BMDS) – Program costs decreased $3,596.4 million (-3.1%) from $122,362.6 million to $118,766.2 million, due primarily to a reduction in the Theater High Altitude Area Defense (THAAD) missile production rate (-$1,247.2 million), the elimination of seven AN/TPY-2 radars (from 18 to 11) (-$1,237.2 million), and the placement of the Sea Based X-band (SBX) radar in limited test and contingency operation status (-$666.3 million). There were additional decreases for the reduction of three THAAD batteries (from 9 to 6) (-$540.8 million), reductions in Special Programs funding (-$408.2 million), a reduction of Aegis Standard Missile-3 Block IB missiles in FY 2013 (-$298.1 million), cancellation of the Airborne Infrared Program (-$239.3 million), and reductions in the Directed Energy Program (-$194.2 million). These decreases were partially offset by the application of revised escalation indices (+$684.8 million), increases to the Israeli Cooperative Program for FY 2011-2012 (+$217.8 million), increased construction estimates for Romania and Poland Aegis Ashore sites (+$213.0 million) [emphasis DID's], and increases for Iron Dome in FY 2011 (+$205.0 million).”

Program costs

March 29/12: AA Romania. BAE U.S. Combat Systems in Minneapolis, MN receives a $23 million contract modification for MK 41 Vertical Launching System mechanical modules and related equipment and services for DDG 116 and Aegis Ashore, Host Nation One (Romania). Contract modification efforts includes requirements to procure MK41 VLS mechanical systems, production of support material, interim support parts, and equipment in support of DDG51-class new construction, and Aegis Ashore Missile Defense Systems requirements.

Work will be performed in Aberdeen, SD (43%); Farmingdale, NY (19%); Aiken, SC (15%); Fort Totten, ND (10%); York, PA (7%); Minneapolis, MN (5%); and Louisville, KY (1%). Work is expected to complete by September 2015. US Naval Sea Systems Command in Washington, DC manages the contract (N00024-11-C-5301).

March 28/12: Beyond Europe? Hurriyet Daily News reports that EPAA could soon have other regional counterparts:

“The US seeks to expand its missile systems to Asia and the Middle East by building regional shields against ballistic missiles, similar to the NATO shield already in Europe. A senior Pentagon official says the Obama administration will hold talks with South Korea, Japan, Australia and Gulf Cooperation Council countries.”

Feb 23/12: AA Romania. Raytheon Integrated Defense Systems in Sudbury, MA receives a $106.5 million modification to previously awarded contract for the production of an AN/SPY-1D-V radar transmitter group for Aegis Ashore Missile Defense System Host Nation 1 (Romania), as well as 2 AN/SPY-1D-Vs and a MK 99 Mod 14 targeting illuminator to equip the future DDG 116 destroyer.

Work will be performed in Andover, MA (80%); Sudbury, MA (15%); and Portsmouth, RI (5%), and is expected to be complete by September 2017. US Naval Sea Systems Command in Washington, DC manages the contracts (N00024-09-C-5111).

Feb 18/12: Turkey(s). During meetings with NATO chief Anders Fogh Rasmussen, Turkish Foreign Minister Ahmet Davutoglu states the TPY-2 radar based at Diyarbakir (vid. Sept 3/11) must not have any of its data sets shared beyond NATO, with a specific reference to Israel. The radar is positioned in a way that makes it easy to see into Iran, for early detection of ballistic missile launches. Voice of America | UPI.

Feb 16/12: Phase 2 ships. The US Navy announces the 4 Arleigh Burke Class guided-missile destroyers which will be forward deployed to Rota, Spain in FY 2014 and 2015. See also DoD Buzz.

“The four include three from Norfolk, Va; USS Ross, USS Donald Cook, and USS Porter, and one from Mayport, Fla., USS Carney. The ships are in support of President Obama’s European Phased Adaptive Approach to enhance the security of the European region… Ross and Donald Cook will arrive in fiscal 2014 and Carney and Porter in fiscal 2015.”

Nov 1/11: Radars. The US Missile Defense Agency (MDA) awards Raytheon IDS of Woburn, MA a maximum $307.6 million indefinite-delivery/ indefinite-quantity (IDIQ) contract. Under this new contract, Raytheon will maintain software required to operate “the X-band family of radars,” and perform and Ballistic Missile Defense System test planning, execution and analysis. Discussions with Raytheon personnel confirmed that the funding applies to the XBR radar on the SBX naval platform, as well as their AN/TPY-2 radars (THAAD, EPAA, deployed in Israel & Japan), and a “Ground Based Radar Prototype” that they’re working on as a technology demonstrator.

Work will be performed in Woburn, MA from Nov 1/11 through Oct 31/13, and the MDA’s FY 2012 research, development, test and evaluation funds will be used to fund initial orders. The MDA at Redstone Arsenal, AL manages the contract (HQ0147-12-D-0005).

FY 2010 – 2011

Europe grapples with BMD; Czechs out, Turkey in; Aegis Ashore shifts the plan and the costs; Progress report. (click to view full)

Sept 15/11: Progress report. The White House offers an update on progress made so far on its European missile defense plans. By Phase:

Phase 1: “In March of this year the USS Monterey [CG-61] was the first in a sustained rotation of ships to deploy to the Mediterranean Sea in support of EPAA. Phase One also calls for deploying a land-based early warning radar, which Turkey recently agreed to host as part of the NATO missile defense plan.”

Phase 2: “This week, on September 13, the United States and Romania signed the U.S.-Romanian Ballistic Missile Defense Agreement. Once ratified, it will allow the United States to build, maintain, and operate the land-based BMD site [and SM-3 deployment] in Romania.”

Phase 3: “Poland agreed to host the [SM-3] interceptor site in October 2009, and today, with the Polish ratification process complete, this agreement has entered into force.”

Russia: “As an initial step, NATO and Russia completed a joint ballistic missile threat assessment and agreed that the [NATO-Russia Council] would resume theater missile defense cooperation. The United States and Russia also continue to discuss missile defense cooperation through a number of high-level working groups at the State and Defense Departments.”

Sept 9/11: Aegis Ashore. The US Missile Defense Agency in Dahlgren, VA awards a $115.5 million sole source cost-plus-award-fee/ cost-plus-fixed-fee contract modification to Lockheed Martin MS2 in Moorestown, NJ, for continued Aegis Ashore Combat System adaptation efforts, site planning, transportation planning, technology initiatives and studies. This award of contract line item number (CLIN) 0001, and increase in the amounts for CLINs 0011 (material) and 0012 (travel), increases the total contract value to date from $61.2 million to $176.7 million.

Work will be performed in Moorestown, NJ, through Sept 30/12. FY 2011 research, development, test and evaluation funds will be used to incrementally fund this effort (HQ0276-10-C-0003, PO 0019).

Sept 2/11: Turkey in. Turkey has agreed to emplace an AN/TPY-2 early warning radar, facing Iran and linked to US Navy systems via Cooperative Engagement Capability. Turkish reports place it near Diyarbakir in SE Turkey, which also hosts Patriot missile batteries. Col. David Lapan tells Stars & Stripes that the agreement has some further required approvals to clear, but “The hope is to have it deployed by the end of this year.” Zaman Dis Haberler [in Turkish] | Missile Defense Advocacy Alliance | Stars & Stripes | Russia’s RIA Novosti.


Aug 23/11: Phase 3. Raytheon Missile Systems Co. in Tucson, AZ receives a $9.8 million sole-source, cost-plus-award-fee contract modification. The CLIN 0008 option, “Future Upgrades and Engineering Support,” will help the Missile Defense Agency execute technical analysis for the Aegis BMD 5.1/SM-3 Block IIA combination, which is critical to PAA Phase 3. Exercising CLIN 0008 increases the total contract value from $276.7 – $286.5 million.

Work will be performed in Tucson, AZ through Sept 30/16, and will be incrementally funded by FY 2011 research, development, test, and evaluation funds. Though the SM-3 Block IIA is a cooperative program with Japan, this is not a foreign military sales acquisition. The US MDA in Dahlgren, VA manages the contract (HQ0276-10-C-0005, PO 0015).

July 6/11: DSB Report. In an open letter, the US Defense Science Board aims to dispel impressions that they recommended against the SM-3, which by its nature is a mid-course or terminal phase interceptor:

“The DSB concluded that the Missile Defense Agency is on the right track in developing European Phased Adapted Approach (EPAA) options, including continued evolution of the SM-3 family of missiles… The DSB also examined the potential in the EPAA context for EI [Early Intercept] in regional defense against short-range missiles before threat payloads could be deployed, and concluded that this was not a viable option because of technical constraints… The fact that this form of EI is not viable in shorter-range regional applications does not imply that either SM-3 family interceptors or the EPAA concept are flawed… MDA is on the right track in pursuing this capability for national missile defense, and examining the potential application in regional defense as a function of the range of threat missiles.”

June 23/11: CRS Report. The US Congressional Research Service releases the latest update of “Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress” [PDF]. Key excerpts:

“Some observers are concerned – particularly in light of the EPAA – that demands from U.S. regional military commanders for BMD-capable Aegis ships are growing faster than the number of BMD-capable Aegis ships. They are also concerned that demands from U.S. regional military commanders for… BMD operations could strain the Navy’s ability to provide regional military commanders with Aegis ships for performing non-BMD missions… MDA states that SM-3 Block IAs have a unit procurement cost of about $9 million to $10 million, that SM-3 Block IBs have an estimated unit procurement cost of about $12 million to $15 million, and that SM-3 Block IIAs have an estimated unit procurement cost of about $20 million to $24 million.”

June 15/11: Czech Republic. The Czech Republic formally abandons its proposed role in the U.S. “Phased Adaptive Approach” to missile defense. Defense Minister Alexander Vondra told visiting Deputy Defense Secretary William Lynn that his country no longer wanted to participate in the American system, but would continue working within NATO on potential European defenses. Stars & Stripes.

Czech out

April 15/11: Testing. Flight Test Standard Missile-15 (FTM-15) begins to test the European Phased Adaptive Approach architecture, firing an SM-3 Block 1A missile against an intermediate-range (officially, 1,864 – 3,418 miles) target, based on AN/TPY-2 ground-based radar data, before the USS O’Kane (DDG 77, equipped with AEGIS BMD 3.6.1) could pick the target up using its own radar. Initial indications are that all components performed as designed, and the missile recorded the 21st successful AEGIS BMD intercept in 25 tries.

The target missile was launched from the Reagan Test Site, located on Kwajalein Atoll in the Republic of the Marshall Islands, approximately 2,300 miles SW of Hawaii. The AN/TPY-2 radar, which is also used as part of the THAAD missile system, was located on Wake Island, and crewed by Soldiers from the 94th Army Air and Missile Defense Command. It detected and tracked the missile, then sent trajectory information to the 613th Air and Space Operations Center’s C2BMC(Command, Control, Battle Management, and Communications) system at Hickam Air Force Base, HI. That was relayed to USS O’Kane, sailing to the west of Hawaii, which launched the SM-3-1A missile about 11 minutes after target take-off. O’Kane’s own AN/SPY-1 radar eventually picked up the incoming missile itself, and controlled the missile until impact.

As an important sidebar, the 2 demonstration Space Tracking and Surveillance Satellites (STSS), launched by MDA in 2009, successfully acquired the target missile, providing stereo “birth to death” tracking of the target missile.

FTM-15 was less dramatic than the 2008 satellite kill using an SM-3, but it’s equally significant. The successful full integration of ground and naval defenses, remote launch, and supplementary satellite track confirmed that EPAA Phase I, which has already deployed, works. It did so even though launch on remote track was supposed to wait for AEGIS BMD 5.1, and IRBMs were supposed to wait for SM-3 Block II. Instead, the test also combined to extend the current system’s proven capabilities, while validating the difficult connections that make a missile defense system more than the sum of its parts, and proving out an important early warning element (STSS) in the system. US MDA | Lockheed Martin | Raytheon | Lexington Institute.

April 3-18/11: The Russian Question, Take 2. Russia’s NATO envoy Dmitry Rogozin describes the issue of NATO-Russian missile defense cooperation as “a complicated matter, but it is not hopeless.” Nonetheless, differences run very deep. Russian Foreign Minister Sergei Lavrov roiled the waters recently when he said that:

“We insist on only one thing: that we’re an equal part of [a joint missile defense arrangement]. In practical terms, that means our office will sit, for example, in Brussels and agrees on a red-button push to start an anti-missile, regardless of whether it starts from Poland, Russia or the U.K.”

It’s not 100% clear if he meant veto power over launches, though it certainly sounds that way. In response, Sen. Mark Kirk [R-IL] sent a letter to President Obama, co-signed by 38 Republican senators. Excerpt:

“In our view, any agreement that would allow Russia to influence the defense of the United States or our allies, to say nothing of a “red button” or veto, would constitute a failure of leadership… ask for your written assurances that your Administration will not provide Russia with any access to sensitive U.S. data, including early warning, detection, tracking, targeting, and telemetry data, sensors or common operational picture data, or American hit-to-kill missile defense technology…”

They’re not likely to get those things, but it’s a warning shot that any agreement along these lines would face a Senate backlash, and become a 2012 election issue. NATO Secretary-General Anders Fogh Rasmussen also poured cold water on the concept, saying “We are thinking about two systems – one NATO’s and one Russian – that will cooperate and exchange information to make us more secure.” Bloomberg re: Lavrov | Agence France Presse | right-wing Heritage Foundation | Russia’s ITAR-TASS | Moscow Times re: NATO | The Telegraph (UK) | Voice of Russia re: Rogozin | AEI’s Weekly Standard (incl. full text of Senators’ letter).

March 24/11: GAO Report. The US GAO issues report #GAO-11-372: “Missile Defense: Actions Needed to Improve Transparency and Accountability.” Key excerpts:

“In 2010, MDA was able to meet or exceed its delivery goals for several MDA activities, such as missile defense upgrades to Aegis ships… MDA finalized a new process in which detailed baselines were set for several missile defense systems… [but] GAO found its unit and life-cycle cost baselines had unexplained inconsistencies… DOD has not fully implemented a management process that synchronizes European missile defense acquisition activities and ensures transparency and accountability. Without key management and oversight processes, there is a limited basis for oversight, and there is a risk that key components will start production before demonstrating system performance… GAO makes 10 recommendations for MDA to strengthen its resource, schedule and test baselines, facilitate baseline reviews, and further improve transparency and accountability. GAO is also making a recommendation to improve MDA’s ability to carry out its test plan. In response, DOD fully concurred with 7 recommendations. It partially concurred with 3…”

Feb 7/11: Turkey. With Turkey seen to be demurring on proposals to host one or more American AN/TPY-2 radars, as part of a European missile defense shield, US Senators Jon Kyl [R-AZ], James Risch [R-ID], Mark Kirk [R-IL] and James Inhofe [R-OK] have sent a joint letter to Secretary of Defense Robert Gates, asking him to consider Georgia as one of several potential alternate hosts.

Georgia’s Deputy Foreign Minister David Dzhalagania says the country has not formulated a concrete position, but thinks the proposal is interesting. The very thing that makes it interesting to Georgia – a major US asset that America would feel compelled to protect if hostilities begin again with Russia – is also the potential down-side to its placement in that country. On the other hand, a radar there would be very well positioned to monitor Iran. Civil Georgia | Georgia’s The Messenger | Russia’s RIA Novosti.

Dec 27/10: AA Kauai. Lockheed Martin Mission Systems and Sensors in Moorestown, NJ receives a $65.6 million contract modification for production of the Aegis Weapon System, tooling, test equipment, and associated technical services for the Aegis Ashore test site at the Pacific Missile Range Facility in Kauai, Hawaii.

Work will be performed in Moorestown, NJ (87%), and Clearwater, FL (13%), and is expected to be complete by October 2014. US Naval Sea Systems Command in Washington, DC manages the contract (N00024-09-C-5110).

Nov 3/10: AA Kauai. Black & Veatch Special Projects Corp. in Overland Park, KS receives a $6.5 million for firm-fixed price Task Order under an indefinite-delivery/ indefinite-quantity contract for architect-engineer services in support of the Aegis Ashore Missile Defense Test Complex at the Pacific Missile Range Facility in Barking Sands, Kauai, Hawaii. They’ll prepare plans, specifications, cost estimates for design-bid-build requests for proposal contract documents, and other related services for FY 2011.

Work will be performed in Barking Sands, Hawaii, and is expected to be complete by June 2011. One proposal was received for this task order by NAVFAC Hawaii in Pearl Harbor, HI (W912GB-09-D-0062, SR02).

Aug 24/10: AA Kauai. Lockheed Martin Mission Systems and Sensors (LM MS2) in Moorestown, NJ, is being awarded a sole-source, not-to-exceed $69.8 million cost-plus-fixed-fee letter contract to serve as the “Aegis Ashore” Engineering Agent. In accordance with the AA Program of Record. Contract finalization is expected to be complete by Nov 19/10. The work will be performed in Moorestown, NJ, and the performance period is from August 2010 through April 2011.

This project is part of a $278 million program to increase missile testing on Kauai. LM MS2 will provide the engineering and necessary material to support the design of the Aegis Ashore Missile Defense Test Complex; the deployment sites; the integration of the Aegis Ashore Missile Defense System (AAMDS) into the removable deckhouse; the installation, test and checkout of the AAMDS at these sites; and initial site maintenance and logistics support during site transfer to the lead service. This unfinalized contract will allow LM MS2 to assist in the development of the Aegis Ashore Combat System (AACS) requirements, to include supporting program planning, element capability specification, and concept of operations development. LM MS2 will begin the AACS adaptation, design efforts associated with the configuration of the AAMDS in the removable structure, and designing the enclosures for transport.

LM MS2 will begin those activities associated with validation and verification of the deckhouse requirements and will facilitate system requirements review in September 2010, and system design review in January 2011. FY 2010 Research, Development, Test and Evaluation funds will be utilized to obligate $10.1 million for this effort. The Missile Defense Agency manages this contract (HQ0276-10-C-0003). See also Honolulu Star-Advertiser.

April 1/10: SAR. The Pentagon releases its April 2010 Selected Acquisitions Report, covering major program changes up to December 2009:

“Ballistic Missile Defense System (BMDS) – Program costs decreased $10,068.9 million (-9.7%) from $102,912.4 million to $92,843.5 million, due primarily to the following: cancellation of the Kinetic Energy Interceptor and Multiple Kill Vehicle Program (-$5,304.2 million); cancellation of the Airborne Laser Program (-$2,634.7 million); elimination of the Space Tracking and Surveillance System follow-on constellation (-$1,972.0 million); transition of the sensor content to procurement (-$1,223.7 million); general infrastructure reductions (-$1,216.7 million); revised estimates for special classified programs (-$1,155.4 million); application of revised escalation indices (-$1,169.1 million); reduced Ground-Based Interceptor inventory due to the change of European site architecture (-$88.0 million); and infrastructure reductions (-$1,216.7 million). These decreases were partially offset by the change in European architecture to Aegis Ashore (+$2,493.5 million) [emphasis DID's] and the consolidation of targets and revised Integrated Master Test Plan (+$1,646.4 million). In addition, procurement costs of $9,520.3 million, which were previously excluded from the SAR due to its pre-Milestone B Research, Development, Test, and Evaluation (RDT&E)-only status pursuant to section 2432 of title 10, United States Code, were added as an adjustment to the program in accordance with Congressional direction. RDT&E and Military Construction (MILCON) costs of $14,340.1 million were also added as adjustments to reflect the addition of two years to this program, which is considered Future Years Defense Program (FYDP) limited and has been allowed to add two years of cost to the program with each biennial budget. These adjustments are not considered to represent cost growth.”

Program costs

Dec 7/09: Europe BMD. Aviation Week notes several undercurrents involved in discussions around Europe’s missile defense.

One is “consequences of intercept,” which are certainly less than the consequences of a missile strike, but could well fall outside the launching country. Another is the compressed time frames, which means authority will reside in the commander – who will that be, and where will that commander be based?

A 3rd question is how the proposed SM-3 phases mesh with European NATO plans, including NATO’s Active Layered Theater Ballistic Missile Defense (ALTBMD) program command and control hub, and proposed land-based radars. Which are going to be an issue all their own, since the system requires them, and the American TPY-2s may not be the only players. Finally, there’s the question of whether European navies will join the program, which would further blue the question of whether this is an American system with NATO ancillaries, or a NATO system with American assets.

Nov 17/09: Early intercept. Northrop Grumman announces a 3-month $4.7 million task order from the US Missile Defense Agency, under an indefinite-delivery/ indefinite-quantity Joint National Integration Center Research and Development Contract. Under the Sept 29/09 task order, the firm will help the MDA integrate and demonstrate an early-intercept capability using existing SM-3 and GBI missiles. This kind of capability is especially relevant for forward-based SM-3s.

The Early Intercept effort aims to address renewed focus by the U.S. Department of Defense on dealing with large raids and countermeasures. Early Intercept will demonstrate an integrated architecture of early warning sensors, including space, airborne, land and sea; regional fire control and battle manager systems; and secure communications. This integrated architecture will enable current systems to engage threats earlier in the battle space to improve protection against large raids and facilitate “shoot-look-shoot” opportunities.

Northrop Grumman will begin by assessing existing sensor and battle management systems’ ability to support missile interception in the difficult boost phase, including technology developed for programs like the now-canceled Kinetic Energy Interceptor and battle management projects. The firm will plan demonstration experiments, leading toward the design and development of an experimental, plug-and-play architecture for battle management, command and control.

FY 2008 – 2009

Israeli interest in land-based SM-3; EPAA plan unveiled. SM-3 launch from CG 70
(click to view full)

Sept 17/09: Plan B – EPAA. The Obama administration announces revised plans for its European missile defense architecture. Instead of positioning Boeing’s Ground-Based Interceptors, which could intercept even the longest-range ballistic missiles, they choose an architecture based around the SM-3.

According to Secretary of Defense Robert M. Gates and Vice-Chairman of the Joint Chiefs of Staff, Gen. James Cartwright, the new plan begins with the current deployment of Patriot PAC-3 point defense systems in Europe, which may be adjusted. Those adjustments will bear watching, as early indicators of seriousness.

  • In 2011, the US Navy is expected to have naval SM-3 Block 1A missiles and ships fully in place, on an expanded fleet of BMD-capable ships versus the 2 Atlantic Fleet destroyers available today. Unfortunately, naval SM-3 Block 1 missiles cannot cover the Czech Republic at all, and can offer only limited coverage for Poland. This will be the only option until 2015, which is beyond the Obama administration’s current term of office.

  • 2015 would see progress on 2 fronts. One is SM-3 Block 1B missiles, and an improved AEGIS BMD system that will expand the range of coverage for American ships. The other would be land-based SM-3s in an easily-deployable configuration, based in Europe, instead of the longer-range Boeing Ground Based Interceptors. Political support for that land-based deployment is likely to become a political flash point, again.

  • The final iteration would take place in 2018 or so, with deployment of the much larger SM-3 Block II missile, on ships and (if deployments have been accepted) on shore. Gen. Cartwright stated that no more than 3 SM-3 Block II locations would be able to cover all of Europe, but cautions that it’s an earlier-stage R&D effort, with all the expected implications for dates and certainty of capabilities.

Cartwright and Gates also added several additional considerations that affected their decision. One was Russian concerns about having large X-band BMD radars that could peer deeply into Russia. By using shorter-range, directional TPY-2 radars deployed in the Caucasus, Iranian aggression can also be hedged without covering Russia so deeply – something that allies like Poland may not necessarily see as a plus. The other, more significant Russian concern was that the GBI missile was powerful enough to be fitted with a nuclear warhead, and become an offensive MRBM with very low warning time. American denials did little to dissuade the Russians, since one must plan on the basis of capabilities rather than intent. That concept becomes technically ridiculous with an SM-3, removing that issue from the table.

Another issue for the USA was cost and flexibility. Gen. Cartwright cited a cost-per-missile of $3.3 million for a Patriot PAC-3, about $9 million for THAAD v1, $9.5-10 million for SM-3 Block I, about $13-15 million estimated for SM-3 Block II… and $70 million for the GBI interceptors. In a global environment that was seeing rapid growth of medium-range offensive missiles, that cost disparity had implications for strategic flexibility, as well as budgets. According to Gates and Cartwright, the GBI deployment was really designed to deal with 3-5 incoming intercontinental missiles, rather than larger salvos of medium-range missiles that are now possible. GBI is also silo-based and so immobile, as opposed to mobile ships and redeployable land-based SM-3s. The question is whether the USA will actually increase its planned buys of SM-3 in response, something that Information Dissemination’s report suggests hasn’t really been thought through yet. The US Navy’s next 5-year budget plan will tell the tale.

With that cost and architecture change comes a 3rd consideration: greater capacity for allied burden-sharing. Several other nations deploy and will deploy AEGIS ships that could be upgraded to SM-3 BMD capability, including Japan (Kongo class, being upgraded), South Korea (KDX-III), Spain and Australia (F100), plus the non-AEGIS F124 frigates fielded by Germany and the Netherlands. The SM-3 missile has already been exported, and could easily be exported more widely. Gen. Cartwright cited the potential for development of a common architecture linking land and naval systems, which would be deployed in Europe, Asia, Israel, and elsewhere. The architecture is being developed to incorporate non-American systems, and Israel’s IAI/Boeing Arrow was specifically cited. Gates added that talks along these lines had begun with Arab Gulf states, who are already developing their own missile defense preparations based on regional command and control systems, Patriot missiles, and possibly THAAD and MBDA’s comparable Aster-30 SAMP/Ts.

Meanwhile, THAAD missiles are still scheduled to deploy to Europe in 2009, as part of operational testing, and the system is still planned for roll-out as the Army’s area-defense weapon. The USA is also still interested in adding 2-stage capability to its GMD/GBI interceptors in Alaska and California, in order to improve their speed and increase their range. The big winner in these changes, however, is unquestionably Raytheon’s SM-3. Pentagon: Gates/ Cartwright press conference | Pentagon: DoD/ Czech MoD press conference | Aviation Week | Aviation Week Ares | Defense Tech called it early | Information Dissemination | Lexington Institute.

Switch to EPAA

August 18/09: Onto land. In a presentation at the 2009 Space and Missile Defense Conference & Exhibition in Huntsville, AL, Raytheon announces that it is developing a land-based system SM-3 system that would work with THAAD’s Raytheon-made AN/TPY-2 long range radar, and could be ready as early as 2013.

The presentation states that this solution could provide Israel a near-term solution to counter ballistic missiles from Iran, given the deployment of TPY-2 radars in Israel by the US government. It is also reportedly under consideration for use in Europe as the missile component of planned deployments in Poland and the Czech Republic.

It’s no accident that this comes just as Boeing announces a “mobile GMD” proposal for Europe by 2015, and Lockheed Martin has gone farther by submitting a modified THAAD proposal to the US Missile Defense Agency for consideration in the 2011 budget. Lockheed Martin has already invested privately funded R&D into a 21″ wide THAAD variant that would nearly double the Army interceptor missile’s range. Current SM-3s are 13.5″ in diameter, current THAADs are 14.5″, and the proposed SM-3 Block II being developed in partnership with Japan will also be 21″ in diameter. It would appear that a competition for the forward-deployed theater defense role may be brewing. Arutz Sheva | Reuters | Aviation Week re: shifts in doctrine | Aviation Week re: THAAD | Jerusalem Post re: Boeing’s “mobile GBI”.

April 27/09: Study. Japan’s Yomiuri Shimbun reports that the US Missile Defense Agency (MDA) has started studying a new missile defense system capable of launching the Standard Missile-3 from the ground.

Aug 4/09: Study. Colin Clark of DOD Buzz publishes a short video interview with Raytheon VP of advanced missile defense and directed energy Mike Booen. The interview took place at the 2009 Paris Air Show, and the topic is the $50 million FY 2010 US military budget request to study land-based SM-3 deployment.

July 17/08: Israel. Aviation Week reports that the US Missile Defense Agency is considering a land-based variant of the SM-3 Standard missile, at Israel’s request:

“SM-3 prime contractor Raytheon is examining a range of options — including a moveable, but not highly mobile, system that could fill Israel’s needs. Very few modifications would be needed for the missile and some tweaks would be required in the command and control system. The system would employ the same vertical launch modules, in an eight-pack configuration, used in the Aegis ship-based system.”

Appendix A: EPAA – The Rationale for The Switch GBI Missile loading
(click to view full)

When it was first announced in 2009, land-based deployment of SM-3 missiles was seen as a political move. That’s partly true. The proposed GBI missile is so powerful that it could be fitted with a nuclear warhead, and become a serviceable MRBM itself. This made Russia very uneasy. Then, too, a massive American investment in fixed site deployments, in countries that could cave in to pressure and ask the USA to leave later on, was both politically and financially problematic.

There’s also a valid military rationale in the European theater for replacing the longer-range Ground-Based Midcourse Defense system used in the USA itself, with the shorter-range and seemingly less-capable SM-3. The bottom line is more missiles, in semi-mobile locations. SM-3 missiles cost about 80% less than GMD’s GBI missiles, and the ground-based infrastructure of adapted Mk.41 vertical launchers and mobile radars is also less expensive than GMD’s full multi-silo complex and fixed radar. Now throw in the ability to move those assets once they’re built, and to quickly bulk up defenses using similar systems deployed at sea. That’s very useful against an enemy who is building a lot of MRBM/IRBM missiles, and could easily use a mass rush offense to overwhelm limited numbers of GBI interceptors – possibly coupled with terrorist operations against their fixed GMD launch complexes.

All of the rationales regarding mobile options vs. fixed sites evaporated when the US MDA switched to the Aegis Ashore configuration, which shares all of the same drawbacks inherent to fixed GMD deployments. The cost benefits remain intact, however, and so does the rationale for deploying more missiles in theater.

Meanwhile, the switch had political costs. Countries like Poland and the Czech Republic are out of range for naval SM-3 Block 1 coverage, and would require too many THAAD batteries on land. That had prompted the push for GBI missiles, and those governments had held firm in the face of domestic political controversy. The USA’s revised plans dealt them a political setback, and delayed meaningful local missile defenses until around 2015 or later. The shift was somewhat jarring, and the Czech Republic subsequently dropped out of US missile defense plans. In 2012, Poland followed with a declaration that it would deploy its own parallel system.

Israel’s Possible Rationales Arrow test concept
(click to view full)

Statements from Raytheon indicated that Israel was already doing research into a land-based SM-3, despite its existing Patriot PAC-2 GEM+ and Arrow-2 architecture. In the end, however, Israel maintained of its focus on an improved “Arrow-3″ interceptor, and America agreed to support that program in the FY 2010 budget. Those developments leave dim odds for land-based SM-3s in Israel.

The question is why they were interested in the first place. Several possibilities exist that might justify an Israeli desire to retain an active Arrow missile fleet, and still deploy the SM-3s.

One is the naval defense option. While Israel has apparently decided on a different direction, its proposed LCS-I frigates would have possessed the ability to fire SM-3 missiles, and their proposed MEKO derivatives might still have that if they’re equipped with strike-length Mk. 41 VLS launchers. The Arrow missile has not been integrated with the Mk.41 VLS, and the program has not described navalization plans.

The 2nd possible justification for an Israeli SM-3 buy revolves around and command-and-control developments. Like the LCS-I, any new Israeli frigates firing an SM-3 would need to link to an anti-ballistic capable radar for guidance. Israel already fields ABM-capable land radars like its “Green Pine” system, and the USA has reportedly moved manned AN/TPY-2 THAAD radars into Israel as additional insurance against a Second Holocaust perpetrated by Iran. Linkage of a naval missile’s guidance to those kinds of land platforms would involve many of the same modifications required by a fully land-launched and controlled SM-3, and statements by America’s General Cartwright say that the USA’s land-based anti-missile command and control systems that will work with land-based SM-3s, are also being developed to include the Arrow.

The 3rd possible justification is range. The SM-3 boasts a range about 5x longer than the Arrow-2, at 300 miles vs. 50-60 miles. A tripartite system of SM-3, Arrow-2, and Patriot missiles would effectively offer the 3 layered tiers required by a country of Israel’s size: national defense/ first line of defense, defense of key regions/ second shot, and defense of specific sites/ final attempt.

Fourth, deployment would coincide with a growing shift in the USA to focus on “ascent-phase intercept” of medium (MRBM) and intermediate-range (IRBM) missiles. If the launchers are deployed close enough to the firing missile, interceptions become possible sometime between the boost and mid-course phases during entry into space, right before the target missile can begin deploying decoys. The Middle East’s compressed distances are a threat, due to low warning times and the resulting hair-triggers. They might also be an opportunity.

Finally, the SM-3 is an active production item for the USA and Japan, which leverages the infrastructure created by a large-scale, full-rate production set of programs. This means that SM-3s can be produced far faster than additional Arrow missiles. If developments in Iran are leading Israel to conclude that it needs to deploy many more theater-range defensive missiles within a short period of time, the THAAD and Arrow programs are unlikely to be able to handle that request due to the stage they’re at, and the industrial framework around them. That would leave the SM-3 as Israel’s only realistic rapid plus-up option.

In the end, as noted above, Israel decided to improve its Arrow system and create the Arrow-3, with funding assistance from the USA. The country clearly considers ballistic missile defense to be a strategic technology capability, has yet to purchase ships that would make naval SM-3 deployment possible, and have already spent the money to integrate the Arrow system with Israel’s air defense architecture. The SM-3’s land-based progress will happen elsewhere.

Additional Readings Background: EPAA Systems

Official Reports

News & Views

  • Breaking Defense (Oct 17/13) – Why Russia Keeps Moving The Football On European Missile Defense: Politics. “Ironically, moving the technology further away from Russian borders could increase the potential for its successful use against Russian missiles. So, whether or not Russian technical concerns could ever really be assuaged must be questioned.”

  • Commentary Magazine (December 2009) – The Missile Defense Betrayal. The revised European missile defense plan was not universally well-received on the political front, with many conservatives sharply critical. Commentary Magazine’s article includes coverage of the political dynamics at work in Poland and the Czech Republic.

  • Lexington Institute (Nov 5/09) – Aegis Ashore: The Navy’s New Missile Defense Mantra.

Categories: News